六年级上册《数学圆的面积》一等奖说课稿
1、六年级上册《数学圆的面积》一等奖说课稿
作为一位兢兢业业的人民教师,常常需要准备说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么说课稿应该怎么写才合适呢?以下是小编收集整理的六年级上册《数学圆的面积》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。
说教材:
1、本节内容是人教版六年级上册第四单元的内容
2、教材的地位和作用
学生从学习直线图形的面积到学习曲线图形的面积,无论是内容本身,还是研究方法都是一次质的飞跃。在这节课中学生将初步学习研究曲线图形的基本方法-----“化曲为直”、“化圆为方”,为以后学习圆柱、圆锥等知识奠定基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。
根据本节课的特点确定如下教学目标.
1、知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程。
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题。 2、能力目标:
使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
3、情感目标:
通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
根据本节课的内容,确定以下教学重点与难点:
教学重点:圆的面积公式的推导过程以及圆的面积公式的应用。
小学六年级上册数学《圆的面积》说课稿
教学难点:由于圆与以前学习的直线图形性质有很大不同,对“曲线图形”转化为直线图形学生是第一次接触,对学生已有知识和经验都是一种挑战,因此,“化圆为方”的转化方法和极限思想的感受是本节课的难点。
说教法:
针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
说学法:
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的`面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时间和自由度使学生成为课堂的主人。
说教学过程:
(一)、复习旧知,渗透转化
新课开始,我先让学生回忆已经学过的圆的认识、周长及长方形、平行四边形面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
圆的面积说课稿
(二)、创设情景,引出课题
出示“一只小狗被它的主人用一根长10米的绳子栓在草地上,问小狗能够活动的范围有多大?”的ppt课件。启发学生进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题,讲授圆的面积的概念。融新知识于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。
(三)、合作学习,探索新知
为了帮助学生开展探究活动,第一步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。学生进行四人小组活动后,我让各小组的代表展示自己剪拼的作品,根据学生出现的多种情况,我利用课件演示把一个圆平均分成8等份、16等份、32等份、64等份、128等份后,并拼成近似的长方形,这样设计让学生在视觉上得到证实:将圆平均分的份数越多,拼成的图形越接近长方形。当把圆平均分成无数份时,拼成的图形就成了长方形,即“化曲为直”。 这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。
第二步,我让学生讨论:根据转化的图形如何推导出圆的面积计算公式?拼成的近似长方形的长相当于圆的什么?宽相当于圆的什么?学生通过观察讨论发现:在剪拼的过程中,图形的形状变了,但面积没变,拼成的近似长方形的面积等于圆的面积,近似长方形的长等于圆的周长的一半,宽等于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积等于圆的周长的一半乘半径,从而推导出圆的面积计算的字母公式s=πr 。
学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成八份、十六份、三十二份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中初步理解了。
在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。
2、六年级上册《数学圆的面积》一等奖说课稿
一、 说教材
1、教学内容:
本节课的教学内容是人教版数学第十一册第四单元《圆》的第一节内容《圆的认识》,主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等。
2、教材简析:
圆是一种常见的平面图形,也是最简单的曲线图形。学生已经对圆有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生独立完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。
3、教学目标:
(1)使学生认识圆,知道圆的各部分名称。
(2)使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
(3)使学生通过观察、实验、猜想等数学活动过程认识圆,进一步发展空间观念和初步的探索能力。
4、教学重点:会使用圆规画圆,知道半径和直径的关系。
5、教学难点:用圆规画圆。
6、教学关键:指导学生正确使用圆规,多进行实际操作练习。
二、 学生分析
在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;本校处在城乡结合处,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。
三、 说教法学法
1、 学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发学习热情,让学生在经历、体验和运用中真正感悟知识。本节课我以学生亲自动手制作车轮为主线,在动手中引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的画法时,有目的、有意识地安排了让学生画一画、指一指、比一比、量一量等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用耳去辨析同学们的答案。
2、 教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。
3、 本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。
四、 说教学过程
(一)、情景导入:
1. 创设游乐场的一个情境
屏幕出示:五辆车,问:你最喜欢乘哪辆车?为什么喜欢乘这辆车? 学生讨论、交流 。(车轮有长方形的、正方形的、平行四边形的、三角形的、圆形的)
2. 导入:现实生活中的车轮都是圆的,而且车轴都装在圆的中心,为什么要装在中心,不装在中心,行吗?这节课我们就一起来做车轮,好吗?
(设计意图:创设游乐场乘车这样一个生活情境,让学生在充分观察的基础上,选择自己最喜欢乘的车,并说明喜欢的理由,使数学的内容充满人文色彩。在体现了社会性和时代感的同时,一下子就激发了学生的好奇心及强烈的探究欲望生动活泼,大大提高了教学效率。)
(二)、动手实践,发现新知
1.做车轮(画圆)
师:要做车轮,首先要做什么?(画圆)
学生小组合作,任选工具画圆,再把圆剪下来。
师:你是怎样画这个圆的? 学生介绍不同的画圆方法。
师:你是怎样用圆规来画圆的?你认为用圆规画圆时要注意什么?
师介绍圆规的结构及画法。
2.安车轴(认识圆心)
师:车轴安装的地方我们把它看作一个点,那么车轴应装在哪里呢? 学生装车轴 。
圆规画圆时,针尖固定的一点。
不是圆规画圆的,怎样找车轴? 学生介绍方法(多次折)
师小结,屏幕显示:圆心O (圆中心的一点叫做圆心)
3、装钢丝(认识半经): 学生装钢丝
投影出学生所画的钢丝,问:你是怎样安装这些钢丝的?它们都是怎样的线段?
师小结:连接圆心和圆上任意一点的线段叫做半径。这样的线段你能画几条?你还有什么发现? (在同一个圆里,有无数条半径,所有半径的长度都相等)
屏幕显示:半经r。 学生判断
问:你现在明白车轴为什么装在圆的中心了吗?(回应了引入的问题)
4、认识直径:1)用学生剪出来的圆进行对折,让学生观察折痕有什么特点?懂得:通过圆心并且两端都在圆上的'线段叫做直径。
2)组织学生分小组讨论,你能否发现直径有什么特征吗?为什么?
3)汇报:同一圆里,直径有无数条,长度都相等。
屏幕显示:直经d 学生判断
5、认识半径与直径的关系
师:刚才我们通过设计车轮,知道了圆内各部分的名称,那么你们还可以发现什么规律吗?
学生小组讨论 (可以让学生在圆上画一画,量一量,比一比)
出示板书:在同一个圆里, d=2r或r=1/2d
现在假如要长途旅行,你要选择哪辆车?为什么?
(设计意图:通过做车轮、安车轴、装钢丝等一系列开放性活动,变被动地学数学为主动地做数学。在动手操作、自主探索、合作交流等方式中,学生掌握了数学的一些思想方法,理解了圆的基础知识,训练了一些基本技能。尤为重要的是培养了学生的创新精神与合作精神,体验了数学学习的快乐,让学生的个性得到了张扬。)
五、 巩固练习
1、 第88页第一题。(学生回答后让他们再说说一些物体的哪一部分是圆。)
2、 填表。(让学生充分理解在同一个圆里半径与直径的关系)
r(米) 0.24 1.42
d(米) 0.86 1.04
3、 判断题:
(1) 经过圆心的线段是直径。( )
(2) 圆心到圆上任意一点的距离相等。( )
(3) 直径的长度是半径的2倍。( )
4、 操作题
(1) 小明有一张没有标出圆心的圆形纸片,你能帮他找到圆的圆形心吗?同时请你说说你是怎样做的?
(2) 画一个半径3厘米的圆。
5、扩展题:在边长为10厘米的正方形里画出一个最大的圆.想一想:可以用哪些办法来确定它的圆心?它的半径应是多少?
(设计意图:通过这样的延伸,做到首尾呼应,使学生初步感受数学知识来源于现实生活,又服务于现实生活,进一步体会数学与生活的联系,增强学习和应用数学的信心。)
6、小结体验:这节课我们学习了什么?说一说你有哪些收获?
3、六年级上册《数学圆的面积》一等奖说课稿
【说教材】
一、教材分析
《圆的周长》是人教版六年级上册第四单元的第二节内容,这是在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进行教学的。教材力图通过一系列操作活动,让学生在观察、分析、归纳中理解圆的周长的含义,经历圆周率的形成过程,推导圆周长的计算方法,为学习圆的面积、圆柱、圆锥等知识打下基础。同时,通过本节课的学习,进一步培养学生动手实践、团结协作、解决问题的能力,并使学生从中受到思想品德教育。
二、教学目标
根据以上结构特点的分析和学生的认知规律,确定了本节课的教学目标如下:
1、 知识目标:在具体情境中让学生认识圆的周长,理解圆周率的意义;理解和掌握圆的周长计算公式,能正确地计算圆的周长。
2、 能力目标:通过对圆周长的测量,圆周率的探索和圆周长公式的推导等活动培养学生观察、动手操作、分析、概括、合作学习的能力。
3、 情感目标:通过圆周率的探索,对学生进行辨证唯物主义教育;结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
三、教学重难点
本节课教学重点是:理解并掌握圆的周长计算方法;圆是曲线图形,是一种新出现的平面几何体,这在平面图形的周长计算教学上又深了一层。特别是圆周率这个概念较为抽象,所以我把探索圆周率的含义以及推导圆周长计算公式作为本节课的难点。
【说教法学法】
学生是开放的、有创造性的个体,他们会带着自己已有的知识、经验、灵感和兴趣参与课堂的师生交往。他们会用自己的猜想,验证来丰富课堂。使数学课堂充满着活力。因此,让学生经历数学知识的形成过程,体验数学学习充满着创造,感受数学的严谨性和结论的准确性,进而培养学生用数学的思维方法思考问题的意识。这正是学生适应未来生活所必须的基本素质。带着这些对新课程的认识,在《圆的周长》教学中,我采用操作、猜想、验证等方法,具体如下:
1、 运用猜想、验证的数学思维方法:在教学中,我先让学生进行大胆的猜想,再用语言引导学生想办法进行验证猜想,让学生感受数学的思维方法,感知数学的严谨性。
2、 动手操作、积极互动法:教师让学生通过测量、实验、计算等活动,发现问题,自主探究。具体的做法是:让学生利用学具动手操作,发现规律,从而推导出圆周长的计算方法。在探索过程中,老师给予点拨引导,做学生学习的引路人。
3、 观察讨论、交流合作法:教学中,教师组织学生在独立思考的基础上,小组合作交流,并根据学生的年龄特点提出交流的方法和步骤,让学生有序、有目的、有方法的交流。提高交流的时效性。
【教学程序】
整个教学过程分四个环节
第一环节:创设情境,建立圆周长概念
1、出示一块钟表,钟表上的小秒针顶端一分钟走的轨迹是什么图形?那么小秒针顶端一小时走多少路程?引出课题(圆的周长)
2、让学生拿出圆形学具看一看,摸一摸,说一说圆周长指的是哪部分?自己体验、领会圆的周长的含义。(有效的触摸体验,充分的理性概括,使圆周长概念的建构过程充分而有效。)
第二环节:动手实践,感悟测量方法
1、提出疑问:圆的周长是曲线,该怎么来测量圆的周长?
2、引导学生动手操作、合作交流,找出测量圆周长的方法。
3、学生汇报并演示测量方法 。(绕绳法、滚动法)
4、这些圆比较小,如果有一个很大的圆还能用绕绳法、滚动法测量出它的周长吗?如果不能直接测出,怎么办呢?
(通过对两种测量方法的有意反思和自由评价,使学生辩证性地感受到了“缠绕”、“滚动”方法的局限性,引发其探索“计算公式”的积极性,为深入研究圆周长的计算问题作好了“心理”铺垫。)
第三环节:提出合理猜想,并验证猜想
1、正方形的周长是它边长的4倍,那么圆的周长是否也和某条线段有关呢?(鼓励学生大胆猜想)
2、以小组为单位,拿出课前准备的圆形学具,分别量出它们的周长和直径,并算出周长和直径的比值,把结果填入下表:(测量值精确到毫米)
物品名称周长直径 1号圆
2号圆
3号圆
3、学生观察比较后,可以发现不管圆的大小发生怎样的变化,
圆的周长和其直径的比值大概都是三倍多一些。
4、教师介绍圆周率。≈3。14
5、学生阅读圆周率有关资料,教师适时进行爱国主义教育。
6、你能通过分析表格,得出圆的周长的计算公式吗?由于
前面的层层铺垫,学生很容易得出圆的周长计算方法:
C=πd C=2πr
(这部分内容主要是让学生动手操作,自主探讨,并通过观察,发现问题,参与合作交流,归纳总结,获取解决问题的方法,让学生获得一定的情感体验,享受了成功的愉悦。提高了学生分析,推理,概括的能力,发展了学生的空间观念。)
第四环节:运用知识,解决问题
1.例1(设计目的:通过实例计算,可以让学生更好的理解数学于生活,又能解决实际的生活问题的作用,又可为最后的实践打下很好的伏笔)
2.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据 (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终。)
3.总结
4、小学数学六年级上册《圆的面积》教学设计一等奖
教学内容:
义务教育课程标准实验教科书六年级上册P67-68
教学目标:
1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。
2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。
3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:掌握圆的面积计算公式,能够正确地计算圆的面积。
教学难点:理解圆的面积计算公式的推导。
教学过程:
一、回忆旧知、揭示课题
1、谈话引入
前些日子我们已经研究了圆,今天咱们继续研究圆。
2、画圆
首先请同学们拿出你们的圆规在练习本上画一个圆。
3、比较圆的大小
请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?
4、揭示课题
我们把圆所占平面的大小叫做圆的面积。(出示课题)
二、动手操作,探索新知
1、确定策略,体会转化
(1)明确研究问题
师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。
(2)体会转化
怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)
其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?
预设:
学生回忆平行四边形、三角形、梯形的面积推导方法。
当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)
三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)
小结:
你们有没有发现这些方法都有一个共同点?
(3)确定策略
那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)
如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?
①引导学生说出沿着直径或半径,把圆进行平均分;
②师示范4等份、8等份的剪法和拼法;
2、明确方法,体验极限
(1)学生动手操作16等份的拼法;
(2)比较每一次所拼图形的变化;
(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。
3、深化思维,推导公式
(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)
(2)交流发现,电脑演示圆周长和长,半径和宽的关系。
(3)多让几个学生交流转化后的长方形和原来圆之间的联系。
(4)根据长方形的面积公式推导圆的面积计算公式。
三、运用公式,解决问题
1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?
出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?
2、判断对错:
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。()
3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?
四、总结新知,深化拓展
1.小结:
通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。
2、拓展
在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)
那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。
5、小学六年级数学上册《圆的面积》教学设计一等奖
教学内容:北师大版数学六年级上册第16—18页的《圆的面积》。
教学目标:
1、使学生认识圆的面积的含义;理解圆的面积公式的推导过程;掌握圆的面积计算公式,并能利用公式计算圆的面积;应用圆的面积计算公式解决简单的实际问题。
2、通过对圆的面积公式的推导,培养学生进行操作、讨论、观察、比较、分析、概括的能力。
3、在教学中,教师注重对学生多种能力的培养,使学生合作学习、自主探索的能力得到加强。
4、渗透转化等数学思想方法,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:
圆的面积公式的推导过程,使学生能理解并掌握圆的面积计算公式,并能利用公式计算圆的面积。
教学难点:转化思想的渗透及圆面积公式的推导。
教学过程:
(一)情境引入,起疑导思
师:同学们,喜欢上公园吗?来,让我们一起去公园走走,好吗?
(播放公园喷水头正在给草地浇水的图片)
师:到了公园,你看到了什么?
生:我看到喷水头正在浇灌草地。
师:你能提出一两个数学问题吗?
生1:喷水头旋转一周,喷到水的地方形成了一个什么图形?
生2:浇灌了多大面积的草地?
……
[说明:爱因斯坦曾经说过:“提出一个问题比解决一个问题更重要。”在教学中,学生主动提出问题、探究问题的习惯和能力的培养,是一个值得关注的课题。从生活的情境出发,更有利于培养学生的问题意识。]
师:这些问题都很好!这节课我们就来研究浇灌了多大面积的草地呢?
师:刚才有的同学看到喷水头旋转一周形成了一个圆形,求浇灌部分的面积,实际上就是求(圆的面积)。
圆的面积指的是哪一部分?我们把圆所占平面的大小叫做圆的面积。
师:继续看,你又发现了什么?
生:圆的面积越来越大。
师:这是为什么呢?
生:半径长了,面积也就大了;半径决定圆的面积。
师:看来圆的面积与它的半径是有关的。
[说明:数学新课程“强调从实际问题抽象成数学模型再加以解释与应用的过程”,结合解决现实问题的过程学习数学知识与方法,应该说是北师版教材坚持新课程理念的一大特点,它体现了数学活动的数学化特征。情境使学生产生“圆的面积与什么有关系呢?”的疑问,学生平静的水面泛起浪花,并急于想解决问题,对问题的思索在学生心中扎下了根,点燃了学生主动参与探索的热情,为进一步寻找解决策略明确了方向。]
(二)首次探究自主估算巧设玄机
师:圆的面积与它的半径到底有什么关系?你准备怎样去寻找它们之间的关系呢?
生:我们如果能先确定半径,再试着找出它的面积,也许能找出它们之间的关系。
[学习纸:正面画有两个圆,上面标有半径的长度;背面在方格纸中画有与正面同样大小的圆]
(1)师:好,这儿有两个圆,一个半径是1厘米,另一个半径是2厘米。任选一个你能估出它的面积吗?
生试估,师评价。
(学生有点困难时)
师:请大家翻到学习纸的背面,有两个与正面面积相等的两个圆,这里每个方格的边长是1厘米,那每个方格的面积就是(1平方厘米)。再试估一下,你选择的圆面积大约是多少?你是怎么估的?
[说明:在半径已知的情况下,引导学生试着估出圆的面积。没有方格的帮助,学生一时无从下手,再利用背面方格纸的帮助,体会用方格估算圆面积的好处。对于边长是1厘米的正方形的面积(面积单位),学生已经有了很深的认识。本次估算,目的是为学生建立表象,隐含估算圆面积的两种策略:一种与整个大正方形比;另一种先用1/4圆与小正方形比,再用整圆与大正方形比。]
(2)师:再请大家拿出手中的圆片,你能估出它的面积是多少?
生可能有:贴到方格纸上;对折再对折,量出半径。
师:你是怎么想的?还真有办法!刚才我发现有更奇特的方法。
能不能将上面两种方法综合一下。
[说明:由有方格图的支撑,到没有方格,学生必定无意识的从上面的两次活动中总结经验并加以应用。在估圆片面积这一环节,承载着太多的意义:一使学生借助上面活动形成的表象,进一步强化估算的方法,逐渐帮助学生建立起数学模型。二诱发学生利用上面活动的思维惯性,寻找圆片半径,进而将圆片对折再对折,既隐含另一种估的策略,更隐含将圆片等分4等份的玄机,使学生主动探索(剪成4等份)成为可能。]
(3)师:刚才我们在估算圆的面积时,都有意无意的拿圆的面积与圆外的大正方形的面积比。(出示图)
师:如果不知道一个圆的半径,你还能表达出它的大概面积吗?
生:(先计算)圆的面积小于4r2。
师:谁来说说这里r2指的是哪部分的面积呢?
生:小正方形的面积。
师:我们是不是也可这样理解,将1/4圆看大一些为r2,那么圆的面积就会小于4r2。能不能将这里的扇形看小一些呢?那圆的面积就会大于(2r2)。
得出:2r2<圆的面积<4r2
师:看样子,圆的面积还真与半径有关系。大胆的猜一猜,圆的面积最有可能是多少?
[说明:通过逐渐抽象概括,从而估
算出圆面积的大致范围。在学生大胆的猜想下,又孕育着验证的必要性。]
(三)再次探究触发灵感体会“极限”
师:现在如果知道圆的半径,你能求出圆的面积吗?
生:还不能,只能大致确定一下范围。
师:看来,我们还得继续探索下去。
[说明:教师应当善于设计这样的情境,在其中学生已有的知识能力不足以解决所面临的问题,从而产生观念上的不平衡,使学生较为清楚地看到自身已有的局限性,并努力通过新的学习活动以达到新的更高水平上的平衡。]
师:还记得以前,我们研究一个图形的面积时,用到过哪些好的方法?
生:将新的图形转化成为已经学过的图形。
师:举个例子。这两种思路,都是将新图形转化成已学过的图形。
师:我们能不能从中受到启发,也来将圆转化成我们学过的图形?
[说明:开放性的设问,促发学生从自己已有的认知结构中检索有关的知识,去多方面的解决新问题。以旧引新,可促进学生知识的系统化,可扫除在新知中将要遇到的思维障碍,突出新知的生长点,将学生带入有利于学习新知识的“邻近发展区”。]
师:来!同桌为一个小组,讨论一下怎么动手?
巡视学生可能出现的情况:
①将圆周剪直成一个正方形,剩余部分无法拼成学过的图形;
②将两个圆拼在一起,无法拼成学过的图形;
③将圆片沿半径等分成4等份,拼成一个近似的平行四边形或长方形。(拼成的近似三角形与三角形差异较大,出现的可能性较小。)
④将一个圆折成若干等份,每份象一个三角形,用一个三角形的面积乘份数就是圆的面积。
师:同学们,很多同学已经有了想法了,这儿有两种,还有其他转化的方法吗?如果中途想到了,也可以上来说,好吗?
评:[③将圆片沿半径等分成4等份,拼成一个近似的平行四边形或长方形。]
师:谁来现场采访一下,听听他们是怎么想的,好不好!谁先发问?
预设采访语:
为什么将圆平均分成了4份?或你怎么想到沿半径去剪的?
你拼成了什么图形?
8等份与4等份相比,你觉得你拼的图形怎么样?
你觉得应该怎么做,拼成的图形才更像平行四边形?
[说明:学生自然而然的将圆片等分成4份,远比老师提前准备的'8等份,16等份要有分量,而这样学习的结果是学生自己“创造”的,其教育价值远比教师“直接告诉”要大得多。]
谢谢同学们的精彩提问和发言!
师:同学们,要想拼成的图形更像平行四边形,应该怎么办?
生:继续分。
师:要不要试一试。
16等份,拼成的图形怎么样?32等份?
想象一下,如果64等份呢?开始有点像(长方形)了。
继续分下去,分得份数越多,拼成的图形就简直成了(长方形)。
[说明:将圆片4等份、8等份、16等份,学生可以动手剪一剪、拼一拼,当份数越来越多时,学生感受到不可操作性,这时就有必要借助电脑的优势,弥补操作和想象的不足。在拼法的对比和想象中,学生体会着“化曲为直”,初步感受极限思想。]
师:我们把圆转化成学过的长方形,形状变了,什么没有变呢?
生:面积。
师:要想求出圆的面积,只要求出长方形的面积就可以了。长方形的面积怎么求?这里的长和宽又相当于圆的什么?
[说明:在操作活动中,学生的思维以形象思维为主,教师适时的话锋一转,学生的思维过度到以抽象思维为主,让学生感性的认识上升到理性的高度,有效地推导出圆面积的计算公式。]
(四)运用公式巩固提高
师:怎样计算圆的面积?圆的面积是r的平方的pài倍,刚才哪位同学猜对了?真的很准哟!与周长公式有什么不同?
师:现在利用这个公式,你能浇灌了多大的面积的草地吗?
生:要求出浇灌草地的面积,还需要知道它的半径是多少?
师:这个圆的半径是5米。请求出浇灌部分的面积。
[说明:平时学生解决的问题,往往是条件都告诉了的。在半径还没有给出的情况下,让学生去求圆的面积,学生必定会进行更高层次的思考。建立在需要基础上的学习,才有价值,才有成效。]
(五)归纳总结课后延伸
师:同学们,通过这节课的学习,你有什么收获?(会计算圆的面积;圆面积公式的推导。)
更重要的是我们学会了把圆转化成已经学过的图形,这是一种非常好的方法。在以后的学习中,如果遇到新问题,我们也可试着将它转化成已经学过的知识来解决,你说好不好!
[说明:课堂小结往往是教师一相情愿,重视的是学习的结果,而这里引导学生从探寻问题,解决问题的方法、途径上出发,进一步强化了本节课的设计意图,扩大了本节课的外延。]
6、数学冀教版六年级上册《圆的面积》教案一等奖
教学内容:
圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的`面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2 师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(CAI课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1. 第97页的第3题和第4题。
2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积= 长× 宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2