小学四年级数学求小数的近似数一等奖说课稿
1、小学四年级数学求小数的近似数一等奖说课稿
一、说教材
1、教学内容
《求一个小数的近似数》是人教版数学第八册的内容。求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。
2、教学目标
根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:
(1)、使学生掌握求一个小数的近似数的方法。
(2)、能正确地按需要用"四舍五入法"保留一定的小数位数。
(3)、使学生理解保留小数位数越多,精确程度越高。
3、教学重、难点
通过旧知迁移新知的方法,让学生掌握、理解用“四舍五入法”求一个小数的近似数的方法。
4、教法、学法
根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“动手操作——观察、比较——概括——应用”的学习过程中掌握知识。
二、说程序设计
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。
(一)、复习导入
1、把下面各数省略万后面的尾数,求出它们的近似数。
9865345874131200398210
2、下面的( )里可以填上哪些数。
32( )645≈32万47( )050≈47万
问:(1)你是怎么想的?(2)四舍是什么意思?五入呢?
(二)、新授课
1、导入新课
(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)
2、讲授新课
(1)、出示例题情境图。
师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?
生:思考。
师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据"四舍五入法"保留一定的小数位数.
3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。
4、把课本上的例题以练习的形式让学生做。
师:作必要的讲解和分析。
5、总结求一个小数的近似数的'方法(生齐读)。
注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。
问:1.0和1数值相等,它们表示的程度怎样?
a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。
b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。
即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。
6、求一个小数的近似数应该注意什么?
a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按"四舍五入法"决定是舍还是入。
b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。
(三)、完成课本74页的“做一做”。
独立完成,个别上讲台演做。提问其思考的过程。
(四)、巩固练习
1、完成课本75页练习十二的第1题。
2、完成课本75页练习十二的第2题。
3、把下面各小数四舍五入。
(1)、精确到十分位
3.470.2394.08
(2)精确到百分位
5.3346.2680.495
4.思考
9.996保留两位小数是( )。
(五)、布置作业。
三、说教学反思。
这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。
2、小学四年级数学求小数的近似数一等奖说课稿
一、教材内容及编排意图:
《求小数的近似数》是义务教材人教版数学四年级下册第四单元第五节的内容。是学生已经掌握了用四舍五入法求整数近似数后的一次扩展,同时又为后面改写成以万和亿作单位的数做好知识铺垫。教材内容展示了豆豆测量身高这一现实情境,说明小数的近似数在实际测量当中有着广泛的应用,从而加深对小数的认识,进一步培养学生的数感。
二、教学目标的设定:
1.结合具体情境理解小数近似数的意义,掌握求小数近似数的方法,理解并应用“四舍五入”法求小数的近似数,知道精确度的含义。
2.经历类比迁移求小数近似数的过程,通过观察、发现、讨论交流等数学活动培养学生推理及概括能力,初步掌握“迁移”、“数形结合”等学习数学的方法。
3.感受近似数的实际意义,体会数学与生活的密切联系,激发学习兴趣,培养学生的数感。
三、教学重点:
1.理解并应用“四舍五入”法求小数的近似数。
2.理解求小数的近似数时,近似数末尾的0不能省略的道理。
四、教学难点:
理解求一个数的近似数时,近似数末尾的0不能省略的道理。
五、教学流程:
在这节课中,我采用五环节教学,即“创设情境,提出问题——小组合作,探究新知——回归情景,深化理解——反馈练习,拓展提升——课堂总结,回归生活”。具体设计是:
一、创设情境,提出问题:
通过观察主题图,学生明确了用0.984米、0.98米和1米三个数据都能表示豆豆身高后提出问题:他们是怎样得到豆豆身高的近似数的?引出课题,激发学生对求小数近似数的探究欲望。
二、小组合作,探究新知
1.由整数类比迁移到小数
在回顾了用四舍五入法求整数近似数的方法后,做出强调:求近似数一定要用约等号来连接。随机提出猜想:求小数的近似数是否也会用到四舍五入法呢?
2、自主探究,保留一位小数
接着让学生根据以往的知识经验进行自主探究:保留一位小数求近似数。在充分理解了保留一位小数就是精确到十分位的含义后放手让学生探究,相互交流,汇报时,重视引导学生进行有条理的完整的叙述。由于学生能够在求整数近似数的基础上进行类比迁移,这一环节表述的比较完整,能轻松的将内部思考过程外化为语言表达。
3、汇报交流,提炼方法
接着引导学生观察板书、回顾求1.93和16.195近似数的过程比较讨论得出共性,都是按要求保留一位小数,都要看到小数部分的百分位?不同点是:一个运用四舍法求到的近似数会小于原数,一个运用五入法求到的近似数会大于原数,在讨论交流中,学生明确了四舍五入法仍然是求小数近似数的方法。
4、借用数轴,直观理解
(1)直观发现1.93距1.9更近
但为什么求近似数省略部分的最高位小于5时要四舍,不小于5时要五入呢?在提出这一问题后,学生还是会从四舍五入的方法本身进行思考和解答?是知其然不知其所以然,这时,数轴便是一个很好的突破口,借用动态的课件设计,数形结合,让学生直观感受到因为1.93的位置更接近1.9,所以1.93保留一位小数后约是1.9。
(2)直观列举,体味“四舍五入”的道理
在学生能从“四舍”,和“五入”两个角度思考出近似数是1.9的两位小数后,也更容易思考出近似数是1.9的最大两位小数和最小两位小数是多少。
(3)理解保留一位小数为何只看百分位
从而得出:因为百分位的数决定了原数的位置,所以无论是几位小数在求近似数时,只要保留一位小数只需要看百分位的结论。进而小结出保留一位小数求近似数的方法后,又让学生再类比迁移,得出保留其他位数的方法。
5、类比迁移,尝试归纳
接下来,充分运用练习题的辐射作用引发学生的逆向思考:你能找到能保留三位或四位小数的数吗?为什么?明确原小数至少应该比保留后的近似数多一位。
三、回归情景,深化理解
在学生类推到保留整数的方法后,回归情景图中提出的问题,由0.984怎样想到0.98的,又怎样想到1的呢?这时,学生已能较熟练地解决这一问题。在找到0.984保留一位小数的近似数后,再一次引导观察、比较发现:同一个数因为要求不同,会有不同的近似数,但保留位数越多,就越接近准确数,开始的结论是根据小数的性质结果近似数末尾的0能够去掉:经过讨论后发现因为保留位数的需要(即占位的需要)不能去掉。在此,又借用数轴直观演示近似数为1.0和1的准确数范围,让学生感知到:保留的位数越多,准确数的范围就越小,相应的精确度也就越高。从而得出结论:在求近似数时小数末尾的0不能去掉。
最后提出问题:回想求小数近似数的过程,和求整数近似数的方法相同吗?从而建构起数学知识间的前后联系。
随后,学生自主看书学习,进行查漏补缺。
四、反馈练习,拓展提升
以闯关形式设计的反馈练习富有层次性,思考性,体现变化,能让学生在多种变式中体会用四舍五入法求近似数的实质。体会到运用所学知识胜利闯关带来的成就感,但因为时间的关系,没有给学生更充分的表述机会,不能不说是一种遗憾!
五、课堂总结,回归生活。
本课的最后一次讨论是在本课结束,寻找小数近似数在生活中的应用——购买商品时该付8.953元的究竟会付多少钱呢?由于实际生活的需要,学生会考虑付9.00元。虽然付8.95元相对来说更实惠一些,但实际上5分的钱数已很少见,所以会保留整数付钱更符合生活实际情况,这样,就让数学知识富于了鲜活的生活气息。
总之,求小数的近似数内容抽象,本课着重引导了学生在疑惑处、重点处、难点处进行讨论,重视对知识源点的梳理,力争让学生理解:求近似数要用“四舍五入法”,以及为什么用“四舍五入法”。我的说课结束,谢谢大家!
3、小学四年级数学求小数的近似数一等奖说课稿
一、说教材
(一)教材分析和处理
《求一个小数的近似数》是人教版教材四年级下册第四单元的内容,本节课是学生在学习了小数的意义和求一个整数的近似数的基础上进行教学的。这部分内容既是前面知识的延伸,又是和学生生活密切联系的一个内容,是教学中的一个重点。之前学生只认识简单的小数,通过学习《求一个小数的近似数》以后,学生知道了有些小数是精确数有些小数是近似数,并能跟据具体情况求出一个小数的近似数。本节课教学的重点是理解并掌握求一个小数的近似数的方法,了解求近似数时,精确度的意义。
(二)学生分析:
本节课的授课对象是小学四年级学生,这个年龄段的学生具有强烈的好奇心,求知欲,又已经初步具备了一定的数学思想,掌握了一定的猜想、推理、自主探究的能力,能够利用知识的迁移解决新问题。在辩证的接受别人意见的基础上又能展现自己的独到见解。因此本节课主要发挥学生的主体作用,采用独立思考,再小组合作交流的方式进行学习。
(三)教学目标定位
新课程标准中要求,对这部分知识的教学,要紧密联系学生的生活实际,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情景。因此把学习目标确定如下:
知识与技能目标:
1.探究求一个小数的近似数的方法。
2.会根据要求正确求出小数的近似数。
方法与过程目标:经历求小数的近似数的过程,体验利用旧知识迁移学习的方法。
情感态度目标:感受数学知识与日常生活的密切联系,激发学生学习数学的兴趣,培养数感和数学意识。
在确定教学重点和教学难点时,考虑到学生以前学过,求整数的近似数的方法,即:“四舍五入”法。对于学生来说不是很难,但“四舍五入”法也是求小数近似数的方法,所以教学重点定为:掌握用“四舍五入”法求一个小数近似数的方法。把教学难点确定为:理解表示近似数时,小数末尾的0不能去掉。
二、说教法、学法
(一)说教法
本节课采用的最主要的教学方法是三步导学法。在民主导学环节,呈现任务后,让学生进行自主探究,然后小组内交流,最后全班展示,得出方法的教学模式。
在教学过程中我首先创设购物的情景,提供数学信息:菜场买菜情境,该怎样付钱?先让学生体验近似数在生活中的运用。紧接着出示课本豆豆身高情境,学生根据生活经验说一说通常会怎么表述,从而引出课题和学习目标。紧接着出示任务一:探究求小数近似数的方法。
(一)任务呈现:
1.自学课本52页内容,并在小组内交流:
(1)课本里是用什么方法求出0.984的三个近似数的。
(2)你还学懂了哪些知识?还有什么疑惑?
2.请你用学会的方法试着解决:
9.956 ≈( )(保留两位小数)
9.956 ≈( )(保留一位小数)
9.956 ≈( )(保留整数)
小组合作讨论求一个小数近似数的方法,结合每个具体的近似数,试着说说是怎样保留的,从而掌握求一个小数近似数的方法,当学生知道0.984保留两位小数是0.98米,1米是保留整数后,让学生试着解决保留一位小数应该怎样做呢?这里是本节课的难点,学生通过交流讨论、尝试、比较的方法突破难点。在总结求一个小数近似数的方法时,也是尝试让学生自己去总结。在整个过程中,体现以学生为主体,其次我采用的教学方法是讲授法,让学生理解“保留、精确、省略”的联系。如:保留一位小数就是精确到十分位,换种说法就是省略十分位后面的尾数。就是教师该出手的时候,一定要毫不犹豫的出手。
二、说学法
本节课主要采用的学习方法是旧知识迁移法,这种学习方法最大的特点是:能够体现学生的自主性,学生能够根据学过的知识,主动探索、学习新的知识,在这个学习过程中,我所做的学法指导是:通过复习求整数近似数的方法和练习题,为学习新知做好铺垫。
三、说教学流程
(一)、创设情境
兴趣是最好的老师,当学生对所学对象发生了兴趣,就有了行为内动力,学习便成为一种自觉的活动。我在课前创设了,菜场买菜的情境,和邻居家孩子小豆豆身高的情景,让学生感觉到数学就是为生活服务的,生活中需要用,所以我们才要学习,以此激发起学生探究的欲望,。
(二)、知识铺垫
“数学教学要从学生已有知识出发”,这是《新课程标准》对我们提出的明确要求,因而复习铺垫过程中我设计了两道用“四舍五入”法求整数近似数的练习题,目的是为下面学习求一个小数的近似数做好知识铺垫。
(三)、探究新知
新课程理念要求转变学生的学习方式,由被动接受式学习转变为主动的探究式学习,以课堂的讲授为主转变为学生自主探究、生生互动、小组合作学习为主。趁着学生强烈的好奇心、求知欲被调动起来之际,呈现学习任务,,进行自主探究和小组交流,最后全班展示交流,得出求近似数的方法。然后进行任务二的研究。这个任务是本节课的难点,我设置了较为开放的思考任务,来比较近似数1和1.0的区别,进而理解“求近似数时,小数末尾的0不能去掉。”
(四)目标检测
1.求下面各小数的近似数。
(1)3.47≈( ) (精确到十分位)
(2)0.402≈( ) (省略百分位后面的尾数)
(3)8.62≈( ) (保留整数)
2.星期天妈妈去超市买东西,结账时电脑显示金额为56.47元,收银员会收妈妈( )元。
(五)畅谈收获
通过这节课的学习,你有什么收获?在与同伴的合作学习中你想说点什么?
(让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。)
4、四年级数学求一个小数的近似数教案一等奖
导读:机会是留给有准备的人,不会备课的校长不是好老师!老师的天职是传授知识、教育学生,完成知识的传承与积淀,然而这一切都是以备课为基础,没有一个优秀的备课教案、教学设计,那么再优秀的老师也难展示出优秀的教学水平。为此,数学网小编末宝给带来了此份教案,希望对你们有所帮助咯,一起来看看吧。
教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。
教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。
教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
教学过程:
一、复习
先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。
1295356089020114536697010
二、新课
教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。
我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。
教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?
教师:2.953保留两位小数,就是要省略哪一位后面的.尾数?(省略百分位后面的尾数。)
省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)
接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)
教师板书:2.9532.95
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。
教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?
教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)
省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)
用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)
2.9加上进上来的1就是3.0。所以2.9533.0。
教师板书:2.9533.0
教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。
教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?
教师板书:2.953
教师:谁能做出这题并且说一说应该怎样做?
指名让学生做这题,并且说一说是怎样做的。
根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。
教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)
指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:
教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。
教师用投影片(或小黑板)出示图如下:
教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。
教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。
教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。
指名让学生发言,在学生发言的基础上教师总结:
1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。
2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。
三、课堂练习
1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。
2.做练习二十四的第3题。
教师先提问:精确到十分位是什么意思?(保留一位小数。)
精确到百分位是什么意思?(保留二位小数。)
然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。
四、课堂作业
练习二十四的第1-2题。
5、五年级数学小数除法求商的近似值教案一等奖
作为一名教学工作者,时常要开展教案准备工作,教案是备课向课堂教学转化的关节点。来参考自己需要的教案吧!下面是小编为大家整理的五年级数学小数除法求商的近似值教案范文,仅供参考,欢迎大家阅读。
教材分析
本节课的设计思想完全遵循课程大纲按课时要求编写教案,它以素质教育为指导思想,采用现代的教学方法,结合学生的年龄和心理特点,力求做到重难点突出。
学情分析
在学习了求积的近似数的方法、小数除法后,学生再来学习本节课的内容,不会感到太困难。教师尽可能的创造学生互相学习、互相讨论的机会,发挥学生的主观能动性,让每位学生突破自己,展示自己,同时应重点引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。同时,引导学生善于观察、发现求商的近似数的简便方法。
教学目标
1、知识与技能:
(1)使学生理解商的近似值的意义。
(2)掌握“四舍五入法”取商的近似值的方法,能正确的按题意求商的近似值。
2、过程与方法:能根据实际情况进行求近似值。
3、情感、态度与价值观:培养学生数学知识,在实际生活中灵活应用的能力。
教学重点和难点:
1、教学重点:理解商的近似值的意义,掌握“四舍五入法”取商的近似值的方法。
2、教学难点:能根据实际情况求商的近似值。
教学过程
一、复习导入:
1、口算。
0.63÷7 0.24÷0.3 0.65÷0.13
72÷144 1.44÷0.6 5.6÷0.08
2、按“四舍五入”法,将下列各数保留一位小数。
1.483 5.347 8.785 2.864
3、按“四舍五入”法,将下列各数保留两位小数。
7.602 4.003 5.897 3.996
做完第2题后,要让学生说明其中小数末尾的“0”为什么不能去掉。
二、探索新课:
1、教学教科书P23页例7。
(1)出示例题7。(提问学生:一打是多少个羽毛球?)
(2)要求根据书上提出的.信息列式计算.列式 19.4÷12。
(3)依据 单价=总价÷数量。
(4)依据题意要求,取商的近似值。
2、小结:
在日常生活中,小数除法所得的商也可以根据需要,采用“四舍五入法”保留近似值,保留时,一般只除到需要保留的小数位数多一位就可以四舍五入了。
三、巩固练习:
1、求下面各数的近似数:
3.81÷7 32÷42 246.4÷13
2、做第23页“做一做”中的题目。
(1)教师让学生独立按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对。做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数。)
教师问:你解题时用了什么技巧?
(2)集体订正。
四、课堂小结:
(1)提问:今天我们学了那些内容?你有那些收获?(出示课题:商的近似值)
(2)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
将学生分成6组,每组4人,合作探究,互相交流,探讨真知。
然后让各小组汇报交流,达到生与生的交流,师与生的交流。
随后,教师进行总结。
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位。
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了。
五、布置作业:
练习四第10、11、13题。
6、五年级数学上册小数除法求商的近似值优秀教案一等奖
教材分析
本节课的设计思想完全遵循课程大纲按课时要求编写教案,它以素质教育为指导思想,采用现代的教学方法,结合学生的年龄和心理特点,力求做到重难点突出,精心的教学设计。
学情分析
在学习了求积的近似数的方法、小数除法后,学生再来学习本节课的内容,不会感到太困难。教师尽可能的创造学生互相学习、互相讨论的机会,发挥学生的主观能动性,让每位学生突破自己,展示自己,同时应重点引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。同时,引导学生善于观察、发现求商的近似数的简便方法。
教学目标
1.知识与技能:
(1)使学生理解商的近似值的意义。
(2)掌握“四舍五入法”取商的近似值的方法,能正确的按题意求商的近似值。
2.过程与方法:能根据实际情况进行求近似值。
3.情感、态度与价值观:培养学生数学知识,在实际生活中灵活应用的能力。
教学重点和难点
1、教学重点:理解商的近似值的意义,掌握“四舍五入法”取商的近似值的方法。
2、教学难点:能根据实际情况求商的`近似值。
教学过程
一、复习导入
1.口算。
0.63÷7 0.24÷0.3 0.65÷0.13
72÷144 1.44÷0.6 5.6÷0.08
2.按“四舍五入”法,将下列各数保留一位小数.
1.483 5.347 8.785 2.864
3.按“四舍五入”法,将下列各数保留两位小数.
7.602 4.003 5.897 3.996
做完第2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、探索新课
1.教学教科书P23页例7.
(1)出示例题7.(提问学生:一打是多少个羽毛球?)
(2)要求根据书上提出的信息列式计算.列式 19.4÷12
(3)依据 单价=总价÷数量
(4)依据题意要求,取商的近似值。
2.小结:
在日常生活中,小数除法所得的商也可以根据需要,采用“四舍五入法”保留近似值,保留时,一般只除到需要保留的小数位数多一位就可以四舍五入了。
三、巩固练习:
1.求下面各数的近似数:
3.81÷7 32÷42 246.4÷13
2.做第23页“做一做”中的题目.
(1)教师让学生独立按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
(2)集体订正
四、课堂小结:
(1)提问:今天我们学了那些内容?你有那些收获?(出示课题:商的近似值)
(2)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
将学生分成6组,每组4人,合作探究,互相交流,探讨真知。
然后让各小组汇报交流,达到生与生的交流,师与生的交流。
随后,教师进行总结。
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了
五、布置作业:
练习四第10、11、13题。
7、小学数学五年级《根据实际情况求商的近似数》教案一等奖设计
教学内容:省编义务教材第九册p54例1和例5
教材简析:本教学内容是在学生学习掌握用“四舍五入”法求一个数的近似数、估算乘法算式的积和除法算式的商、“求积的近似值”和小数除法的基础上,学习求商的近似值;本节课既是对近似数知识学习的一个终结性对比,又进一步加深学生对数在实际意义上的感受。本堂课在实际需要的基础上,让学生真切地理解学习求商的近似值是必要的,并感受到近似数与我们生活的关系,体会到用“四舍五入”法并不是取近似值的唯一方法,在教学中适当渗透“进一法”和“去尾法”这些更具有实际生活意义的取近似值的例子。
教学目标:
1.知道求商的近似值的生活意义,初步理解近似值比精确值在某种范围内更有应用性。
2.掌握用“四舍五入”法求商的近似值的一般方法,会用“四舍五入”法求商的近似值。
3.渗透用“进一法”和“去尾法”求近似值的例子,使学生能根据实际不同的情况,自己初步学会选择确定取近似值的方法和取近似值所需要的精确度。
4.感受数学与生活的`紧密联系,激发学生认真计算、主动探究的学习兴趣。
5.培养学生观察、比较、分析、归纳和概括的能力,渗透一些数学思想和方法。
教学重点:掌握用“四舍五入”法求商的近似值的一般方法。
教学难点:理解在取商的近似值时,为什么要除到比需要保留的位数多一位的道理;自己选择确定取近似值的精确度;知道一个近似值所表示的不是一个数,而是一类数所共同具有这个近似值的一个范围(或者说是区间)。
教学关键:从学生已有的知识及生活经验,通过思考、讨论和交流来理解和掌握求商的近似值的方法,把握取精确度的生活意义。
教学设想:
1.使学生知道生活中存在大量的准确数(或者说是精确数),但更多的是近似数;由于统计、计算和交流的方便,生活中自然地产生了通过直接计数或者经过四则运算得到的近似数,让学生感受学习近似数和求商的近似数是一种正常的学习数学现象,感受数学知识与人们生活的密切联系,体会数学知识源于生活又服务于生活。
2.因为学生已经有了求一个数的近似数和求积的近似数的基础,为此在教学设计中,力图体现学生主动参与知识的产生、形成和发展的过程,从学生原有的知识结构、认知规律和思维特点上来展开整个新知的探索过程,在不断产生认知冲突的过程中来激发学生的学习欲望,成功地来占有新知,培养学生敢于“提出问题、解决问题”的能力和创造性学习能力。
3.通过本节课的学习特别是学生的积极主动探索,让学生深刻地体会到数学知识来源于生活的实际,又服务于生活实际,体验学习探索成功给学生带来的愉快。
4.本节课以生活实际所存在的近似数的现象引入,创设生活情景,通过设疑引出每一个教学环节上需要学习的数学问题,然后放手让学生经过自己的独立思考、知识迁移、小组讨论、学生交流与教师的精心点拨、指导和启发,来理解和掌握学习新知,并使学生从自己的基础上和接受方式上来同化新知。
一.感受准确数和近似数
1.说出发生在我们身边和生活中所熟悉的数:
⑴.在这次数学年会上,共有5位老师上课,听课的教师大约有250人。
⑵.莫干山主峰高度是720米,世界第一高峰珠玛朗穆峰高度是8848米。
⑶.我国领土的面积有960万平方公里,相当于10258个德清县的面积。
⑷.从第五次全国人口普查获悉:我国现在约有13亿人口。
⑸.逸夫小学多功能教室的占地面积是252平方米。
⑹.数学书有131页,字数80000个,定价5·30元,于2001年4月第7次印刷。
评析:通过学生感受这么多实际生活中随处可见可遇的数,让学生知道生活中存在大量的各种各样的数,体会到近似数比准确数在生活中更具有应用性,这些数可以从学生对生活的积累、计算、估算和查找得来,有机渗透学习方法。
2.对这些数据进行分类:学生相互可以商量,并思考你分类的标准是什么?
3.交流学生的各种分类:由于标准的不同,学生各有不同的分类方法。
4.引出结果:这些数,我们一般可以分为准确数和近似数。
⑴.与实际完全符合的确定了的数,称为准确数。例如:5位,131页,⒌30元等。
⑵.与实际比较接近的数,称为近似数。例如:250人,720米,252平方米等。
5.展示这些近似数是如何得到的:
⑴.说说你对近似数还了解多少?
⑵.近似数是怎样得来的?
①数:例如250人,131页,13亿人等。
那么这里面的13亿是怎样从12。9533亿人得来的呢?这个数保留几位小数?保留整数只要看到什么位?如果将这个数保留两位小数是多少?为什么?怎样求一个数的近似数?
12.9533亿≈13亿
12.9533亿≈12。95亿
说明:从最基本的数数中,再现求一个数的近似数的方法。
②测量:例如720米,8838米,960万平方公里。
说明:在直接测量中,由于测量工具和测量技术的限制,往往得不到准确数。
③计算:例如252平方米,80000个字,960万平方公里等。
多功能教室的长是17。9米,宽14。1米。面积是:
17.9×14。1=252。39≈252平方米
这个积保留几位小数?如果保留一位小数呢?怎样求积的近似数?(先算出准确积,然后根据需要比要求保留的小数位多看一位,再四舍五入)
说明:由于实际中并不需要这么多的小数位数,通过计算只要取有实际意义的小数位数就可以了,从而进一步使学生体会“四舍五入”也是一种常用的求积的近似数的方法。
8、数学四年级上册求近似数教学设计一等奖
教学目的:
1.会将整万的数改成用“万”作单位的数。
2.会用“四舍五入”法省略亿以内数万后面的尾数,求出它的近似数。
3.引导学生观察、体验数学与生活的密切联系,让学生体会数学知识来源于生活,服务于生活,培养学生主动探究的精神和用数学的意识。
教学重点、难点、关键:
1.重点:能把整万的数改写用“万”作单位的数。
2.难点:能正确地省略万后面的尾数写出它的近似数。
3.关键:把生活中的某些镜头带到学生面前,由果到因,让学生体会“近似值”在社会生活中的实际应用。
教学过程:
一、教学把整万的数改写成用“万”作单位的数。
1.投影出示白细胞和红细胞的图片,介绍白细胞:能消灭病菌,清洁血液;红细胞:能输送氧气。一小滴血液含有:红细胞:5000000个,白细胞:10000个。
2.让学生把红细胞 和白细胞的个数读出来。
①按照四位分级的方法把上面三个数表示成下面形式:
500 0000 1 0000
②让学生读出二个数:五百万、一万。
③教师:读了这些数以后,你发现了什么?
④教师根据学生的`读数过程作如下板书:
500 0000=500万 1 0000=1万
3.学生观察、比较等号右边与等号左边的数。
①同学们仔细观察一下,等号右边的数与等号左边的数有什么不同?
(等号右边的数省略了万位后面的尾数,等号左边的数没有省略万位后面的尾数。
②它们有哪些相同的地方?(等号两边的数大小完全相同)
4.学生小组讨论:
①请同学们想一想,怎样用“万”作单位表示整万的数?(用万作单位表示整万的数只需要去掉万位后面的四个“0”,并写上“万”字。)
②用万作单位表示数有什么好处?
(用万作单位表示数既简单又不容易写错,使人一看就知道数的大小。)
5.小结:为了读数和写数的方便,今后我们可以直接用“万”作单位表示整万数。
6.练习:
⑴让学生独立完成第14页“做一做”1、2题,师巡视。
⑵改写完后,抽一部分同学把完成的练习在展示台上展示出来,集体评价。
二、教学用“四舍五入”法求近似数。
1.导入:
有些较大的数,有时没有必要或者无法说出它的准确数。比如,重庆市开展万人长跑活动,参加的人数约15000人,这个15000人就是一个近似数。又比如北京申办2008年奥运会的经费是20000000(2千万)美元,折合人民币约为1亿6千万元,这个1亿6千万也只是一个大概数据。既然生活中用到近似数这么多,那我们就应重视近似数的学习,怎样求一个数的近似数呢?
我们已经学过用四舍五入法求一个数的近似数。
2.复习:
用什么方法省略4926和9375千位后面的尾数?两个数的省略方法有什么不同?(引导学生说出省略千位后面的尾数要根据百位上的数进行“四舍五入”的方法。)
师:如果把数扩大到比万大的数,还可以用同样的方法来求它的近似数吗?
3.教师出示例
①让学生试做,同时指定一名学生在黑板上完成。
②集本订正,然后分组议一议:⑴在省略12756和1389000万位后面的尾数时,要根据哪一位上的数进行“四舍五入”?⑵在求近似数时,12756的千位上的数不满5,应该怎么办?1389000千位上的数比5大,该怎么办?⑶求出的近似数为什么不使用“等号”而要使用“约等号”?
③引导学生通过讨论,解决以上三个问题。要特别注意让学生搞清楚:因为是求一个数的近似数,不是准确数,所以要使用“约等号”。
④让学生完成第15页“做一做”的题目,然后抽学生说说是怎样想的?
4.小结:
①同学们,我们学习了把一个较大的数省略万位后面的尾数,求出近似数;我们还学习了把一个整万的数改写成用“万”作单位的数。这两方面内容在意义和方法上有什么相同的地方和不同的地方?
②学生分小组讨论,然后由每小组推荐一个代表汇报讨论结果,最后由教师总结:求近似数和改写数都要改变数的表现形式,但它们的实质是不同的,求近似数改变了原数的大小,而用“万”作单位只改变了数的表现形式,没有改变数的大小。
三、巩固练习
①完成练习二第3、5题。
订正时让学生说说改写成用“万”作单位的数和省略万后面的尾数求出近似数在方法上有什么不同。
②学生独立完成练习二第4题。
四、课堂小结
教师:同学们回忆一下,这节课我们都学了哪些知识?把一个数改写成用“万”作单位的数以及求一个数的近似数时要注意些什么?
学生小结后教师做概括性的总结和评价。
9、小学四年级上册《求近似数》教案一等奖
教学内容:
教科书第14-15页例5、例6,“做一做”及练习二第3-5、7-8题。
教学目的:
1.会将整万的数改成用“万”作单位的数。
2.会用“四舍五入”法省略亿以内数万后面的尾数,求出它的近似数。
3.引导学生观察、体验数学与生活的密切联系,让学生体会数学知识来源于生活,服务于生活,培养学生主动探究的精神和用数学的意识。
教学重点、难点、关键:
1.重点:能把整万的数改写用“万”作单位的数。
2.难点:能正确地省略万后面的尾数写出它的近似数。
3.关键:把生活中的某些镜头带到学生面前,由果到因,让学生体会“近似值”在社会生活中的实际应用。
教学过程:
一、教学把整万的数改写成用“万”作单位的数。
1.投影出示白细胞和红细胞的图片,介绍白细胞:能消灭病菌,清洁血液;红细胞:能输送氧气。一小滴血液含有:红细胞:5000000个,白细胞:10000个。
2.让学生把红细胞 和白细胞的个数读出来。
①按照四位分级的方法把上面三个数表示成下面形式:
500 0000 1 0000
②让学生读出二个数:五百万、一万。
③教师:读了这些数以后,你发现了什么?
④教师根据学生的读数过程作如下板书:
500 0000=500万 1 0000=1万
3.学生观察、比较等号右边与等号左边的数。
①同学们仔细观察一下,等号右边的数与等号左边的数有什么不同?
(等号右边的数省略了万位后面的尾数,等号左边的数没有省略万位后面的尾数。
②它们有哪些相同的地方?(等号两边的数大小完全相同)
4.学生小组讨论:
①请同学们想一想,怎样用“万”作单位表示整万的数?(用万作单位表示整万的数只需要去掉万位后面的四个“0”,并写上“万”字。)
②用万作单位表示数有什么好处?
(用万作单位表示数既简单又不容易写错,使人一看就知道数的大小。)
5.小结:为了读数和写数的方便,今后我们可以直接用“万”作单位表示整万数。
6.练习:
⑴让学生独立完成第14页“做一做”1、2题,师巡视。
⑵改写完后,抽一部分同学把完成的练习在展示台上展示出来,集体评价。
二、教学用“四舍五入”法求近似数。
1.导入:
有些较大的数,有时没有必要或者无法说出它的准确数。比如,重庆市开展万人长跑活动,参加的人数约15000人,这个15000人就是一个近似数。又比如北京申办2008年奥运会的经费是20000000(2千万)美元,折合人民币约为1亿6千万元,这个1亿6千万也只是一个大概数据。既然生活中用到近似数这么多,那我们就应重视近似数的学习,怎样求一个数的近似数呢?
我们已经学过用四舍五入法求一个数的近似数。
2.复习:
用什么方法省略4926和9375千位后面的尾数?两个数的省略方法有什么不同?(引导学生说出省略千位后面的尾数要根据百位上的数进行“四舍五入”的方法。)
师:如果把数扩大到比万大的数,还可以用同样的方法来求它的近似数吗?
3.教师出示例6
①让学生试做,同时指定一名学生在黑板上完成。
②集本订正,然后分组议一议:⑴在省略12756和1389000万位后面的尾数时,要根据哪一位上的数进行“四舍五入”?⑵在求近似数时,12756的千位上的数不满5,应该怎么办?1389000千位上的数比5大,该怎么办?⑶求出的近似数为什么不使用“等号”而要使用“约等号”?
③引导学生通过讨论,解决以上三个问题。要特别注意让学生搞清楚:因为是求一个数的近似数,不是准确数,所以要使用“约等号”。
④让学生完成第15页“做一做”的题目,然后抽学生说说是怎样想的?
4.小结:
①同学们,我们学习了把一个较大的.数省略万位后面的尾数,求出近似数;我们还学习了把一个整万的数改写成用“万”作单位的数。这两方面内容在意义和方法上有什么相同的地方和不同的地方?
②学生分小组讨论,然后由每小组推荐一个代表汇报讨论结果,最后由教师总结:求近似数和改写数都要改变数的表现形式,但它们的实质是不同的,求近似数改变了原数的大小,而用“万”作单位只改变了数的表现形式,没有改变数的大小。
三、巩固练习
①完成练习二第3、5题。
订正时让学生说说改写成用“万”作单位的数和省略万后面的尾数求出近似数在方法上有什么不同。
②学生独立完成练习二第4题。
四、课堂小结
教师:同学们回忆一下,这节课我们都学了哪些知识?把一个数改写成用“万”作单位的数以及求一个数的近似数时要注意些什么?
学生小结后教师做概括性的总结和评价。