教学设计一等奖

六年级解比例教学设计一等奖

2023-06-15 16:22:16

  六年级解比例教学设计一等奖

六年级解比例教学设计一等奖

1、六年级解比例教学设计一等奖

  教学目标

  1.使学生理解解比例的意义.

  2.使学生掌握解比例的方法,会解比例.

  教学重点

  使学生掌握解比例的方法,学会解比例.

  教学难点

  引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.

  教学过程

  一、复习准备

  (一)解下列简易方程,并口述过程.

  2 =8×9

  (二)什么叫做比例?什么叫做比例的基本性质?

  (三)应用比例的基本性质,判断下面哪一组中的.两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  (四)根据比例的基本性质,将下列各比例改写成其他等式.

  3∶8=15∶40

  二、新授教学

  (一)揭示解比例的意义.

  1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

  2.学生交流

  根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

  3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

  (二)教学例2.

  例2.解比例 3∶8=15∶

  1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

  2.组织学生交流并明确.

  (1)根据比例的基本性质,可以把比例改写为:3 =8×15.

  (2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

  (3)规范并板书解比例的过程.

  解:3=8×15

  =40

  (三)教学例3

  例3.解比例

  1.组织学生独立解答.

  2.学生汇报

  3.练习:解下面的比例.

  = ∶ = ∶

  三、全课小结

  这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

2、六年级解比例教学设计一等奖

  教学目标:

  1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。

  2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。

  3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

  重点难点:

  1.使学生掌握解比例的方法,学会解比例。

  2.引导学生根据比例的基本性质,将带未知数的比例改写成方程。教学准备:多媒体课件。

  一、激情导课

  师:上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  师:这节课,我们还要继续学习有关比例的知识,就是解比例。

  (板书课题:解比例)

  看了课题,你觉得这节课我们应该研究哪些知识?

  引出学习目标(理解什么是解比例,怎样解比例,运用)

  有了明确的学习目标,我们就有了研究的方向,相信同学们在这节课能勤于动手,善于发现,掌握解比例的相关知识,你们有信心吗?

  二、民主导学

  教师用多媒体课件出示教材第42页第1、2行的内容。

  引导学生思考:什么叫做解比例?学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。

  师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。

  任务一:教学例2

  教师用多媒体课件出示例2。法国巴黎的埃菲尔铁塔高320米,北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?

  指名读题,理解题意,找出题中的数学信息。

  请同学们先独立思考,尝试解答,再在小组内交流你的想法。

  提示:交流时,

  1.说说数量间的相等关系。

  2.说说列出的比例。

  3.说说解比例的过程或方法。

  自主学习(先独立思考,再交流自己的想法)

  展示交流(小组代表发言,与台下同学互动补充)

  1.数量关系:

  模型高度:实际高度=110。

  2.列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?

  板书:x320=110

  3.计算。

  请一名学生板演,其余的学生在练习本上做。

  做完后,师追问:怎样把比例式转化为方程式?

  学生回答:根据比例的基本性质转化。

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把未知数解出来。

  注意:解方程要写“解”,那么解比例也要写“解”。师:怎样解这个方程?生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。

  小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。

  小练习:

  餐馆给餐具消毒,要用100mL消毒液配成消毒水,如果消毒液与水的比是1:150,应加入水多少毫升?

  独立完成,集体订正。(这道题还有别的解法吗?请不同思路的同学说说自己的方法)

  任务二:自学例3。

  任务呈现:请同学们自学课本42页例3,并和同桌说一说你解答的依据。

  自主学习:学生独立练习,求出未知项。并在小组同学之间互相交流,发现问题,及时解决。

  展示交流:请一位学生上台板演。

  师追问:还可以用其他的知识解比例吗?

  学生交流后,可能会说出:根据比例的意义,等号右边的比值是1.6,要使等号左边的比值也是1.6,x应等于3.75。

  总结解比例的方法。

  教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?学生回忆解比例的过程。

  教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?

  学生:根据比例的基本性质把比例转化成方程。

  三、检测导结

  1.完成教材第42页“做一做”第1题。

  2.学生独立练习,教师指名板演,集体订正。

  3.反思总结通过这节课的学习,你在哪些方面得到了提高?

3、六年级解比例教学设计一等奖

  教学目标

  1.使学生理解解比例的意义.

  2.使学生掌握解比例的方法,会解比例.

  教学重点

  使学生掌握解比例的方法,学会解比例.

  教学难点

  引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.

  教学过程

  一、复习准备

  (一)解下列简易方程,并口述过程.

  2 =8×9

  (二)什么叫做比例?什么叫做比例的基本性质?

  (三)应用比例的基本性质,判断下面哪一组中的.两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  (四)根据比例的基本性质,将下列各比例改写成其他等式.

  3∶8=15∶40

  二、新授教学

  (一)揭示解比例的意义.

  1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

  2.学生交流

  根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

  3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

  (二)教学例2.

  例2.解比例 3∶8=15∶

  1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

  2.组织学生交流并明确.

  (1)根据比例的基本性质,可以把比例改写为:3 =8×15.

  (2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

  (3)规范并板书解比例的过程.

  解:3=8×15

  =40

  (三)教学例3

  例3.解比例

  1.组织学生独立解答.

  2.学生汇报

  3.练习:解下面的比例.

  = ∶ = ∶

  三、全课小结

  这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

4、六年级解比例教学设计一等奖

  【教学目标】

  1.使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  2.联系生活实际创设情境,体现解比例在生产生活中的广泛应用。

  3.利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情感、价值观的发展。

  【教学重难点】

  重点:

  使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  难点:

  体现解比例在生产生活中的广泛应用。

  【教学过程】

  一、创境激疑,旧知铺垫

  1.什么叫做比例?

  2.什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

  3.比例有几种表示形式?

  二、合作探究,探索新知

  1.出示埃菲尔铁塔挂图

  2.出示例题

  (1)读题。

  (2)从这道题里,你们获得了哪些信息?

  (3)在这信息里,关键理解哪里?(埃菲尔铁塔模型与埃菲尔铁塔的高度比是1:10)

  (4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

  (5)还有一个条件是什么?(埃菲尔铁塔的高是320米)

  (6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

  (7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

  (8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

  (9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

  (10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

  (11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)

  (12)为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

  (13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

  (14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

  (15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)

  (16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

  3.教学例3

  过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

  (1)出示例3,问:这题与刚刚那个比例有哪些不同?

  (2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)

  (3)在这个比例里,哪些是外项?哪些是内项?

  (4)解答(提问:你们是怎么解答的?)

  (5)检验。

  三、拓展应用

  在一个比例中,两个外项的乘积正好互为倒数,已知一个内项是3,另一个内项是多少?

  四、总结

  这节课主要学习了什么内容?

  五、作业布置

  教材43页5题

5、六年级解比例教学设计一等奖

  教学内容:

  教材第35页例2、例3。

  教学目标:

  1、知道什么叫做解比例。

  2、会根据比例的性质或比例的意义正确地解比例。

  3、培养学生认真书写和计算的习惯。

  过程与方法:

  1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

  2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

  教学重点:

  解比例。

  教学难点:

  解比例的方法。

  突破方法:

  引导学生小组合作探究、交流,掌握解比例的根据。

  教法与学法:

  教法:创设问题情境,引导发现。

  学法:独立思考,自主探究。教学准备:ppt课件。

  教学过程:

  一、复习准备

  1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)

  2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

  6:10和9:15 2:80和5:200

  3、利用比例的一些知识,还可以帮助我们解决一些实际问题。

  出示比例:3:9=():15

  师:这个比例中的两个外项和两个内项分别是多少?

  (外项是3和15,一个内项是9,另一个内项未知的。)

  师:你能利用比例的知识求出这个未知的内项吗?可以根据比例的意义:比值相等的两个比可以组成比例。

  因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

  师:像这样,求比例中未知的项,叫做解比例。(课件出示)。今天这节课就利用比例的有关知识解比例。(板书课题)

  二、探索新知

  1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。

  2、出示例题,教学例2。学生读题。

  师:1:10是谁与谁的比?教师随学生的`回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。

  师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)

  师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)

  师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)

  师:像这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?

  板书:

  解:设这座埃菲尔铁塔模型的高度是x米。

  X:320=1:10

  师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?谁上来做做?为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。

  师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)

  师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。在全班学生独立解答的同时,抽一个学生在黑板上解答。

  师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例。)或比例的基本性质来检验。

  解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)现在同学们会用解比例的方法来解决问题了吗?

  3、巩固例2练习。

  (1)出示练习题p37第8题。

  (2)学生独立完成,二名学生板演讲解分析。

  (3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)

  4、这个比例你能解答吗?出示例3:1.5/2.5=6/X

  (1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)

  (2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项。

  (3)学生独立练习,求出未知项。

  (4)同学间互相交流,发现问题及时解决。

  (5)请一位学生上台板演完成例3。

  5、指导学生梳理教材的知识点,完成p35“做一做”。

  三、巩固练习。

  1、课件出示基本练习和提高练习,学生独立完成,指名板演。

  2、解决问题:练习六第9、11题(学生独立完成,集体订正)

  四、本课小结。

  这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)

  五、布置作业。

  p37第7题、p38第10题。

6、六年级下册《解比例》教学反思

  作为一位到岗不久的教师,教学是我们的工作之一,我们可以把教学过程中的感悟记录在教学反思中,如何把教学反思做到重点突出呢?下面是小编为大家整理的六年级下册《解比例》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

  《解比例》这节课实际上是一节比例基本性质的应用课。在解比例中,要先根据比例的基本性质把含有未知项的比例式改写成方程,再运用解方程的方法解比例。在把含有未知项的比例式改写成方程时,要注意外项(或内项)乘积等于内项(外项)乘积的运用,不能用错。所以,在学习《比例的意义和基本性质》一课时,一定要让学生熟练掌握比例的基本性质。

  现在回顾这节课,知识点教授总体来说比较顺利,不过也有几个地方是值得反思和注意的:

  反思之一:变换思维,随机应变调整非预设生成。

  开始出示的第一个复习就使我始料未及。题目是这样的:口算每组中两个比的比值,再判断两个比能否组成比例。2:8和9:27;1/4:1/8和1/8:1/16。我出这道题目的用意本来是想出两个能组成比例的题目,但是其中的2:8和9:27因为比值不相等,不能组成比例,当学生口算出比值,说出不能组成比例时,我一时慌了,真懊恼备课之前没有先算一下,后面内容的顺序要被打散了,怎么办?能否补救?也许是急了吧!急中生智,我马上反

  应过来:如果改动其中一个数,再看能不能组成比例?这个问题一出,学生的脑筋立马转动起来,答案也随之即出:“把27改成36,这样9:36的比值也是1/4,这样两个比就能组成比例了。”回答的多好,我在为学生高兴的同时,也在为自己的小机智暗自庆幸!(不过以后可不要再犯哦)后来在讲到课后练习题时有这样一道题目:下面哪些组中的四个数可以组成比例?把组成的比例写出来(1)6、4、18和12;(2)4、5、6和8;(3)4、3、1/3和1/4;(4)3/5、1/5、9和3。此道练习题与我的复习小岔曲虽然形式不同,但细细品味也有异曲同工之处,都是锻炼学生判断几个数能否组成比例。

  反思之二:抓住重点,顺水推舟解决非预设生成。

  复习“根据比例的意义,在括号里填上合适的数。3:5=6:( );( )/15=2/5”时,要学生说一说是怎样想的?这题的要求是根据比例的意义来解答的,但是有一位学生没有运用比例的意义来回答我,她用的`是比例的基本性质,用5×6算出两个内项的积再除以一个外项3等于另一个外项10,虽然她没有明确说用两个内项相乘的积等于两个外项相乘的积来解答,但她说出了其中的意思,这不就是本节新课的重点所在吗,现在被她提前说出来了,这说明该同学已经熟练的掌握了比例的基本性质,学生已经能运用比例的基本性质来求一个未知项了,这不正是我所希望他们掌握的么?顺水推舟,应该及时调整教案,直接进入今天的新授重点,不过我今天却没有这么做,这说明我对教材和教案的把握程度还不够,没有做到胸有成竹。

  总结今天这堂课,虽然按照我的思路上了下来,但是课堂中的闪光点没有及时的抓住。这堂课对于我来说太平淡,对于学生来说,首先对于那几位制造非预设生成的学生来说,没有及时鼓励、表扬,没有使其得到更充分的情感体验,对于全班同学来说,缺少了一个自我发挥,交流讨论的机会。在今后的教学中,我要把握好教材和教案,不能死搬教案,教案是“死”的,而人是“活”的!

7、六年级下册《解比例》教学反思

  《解比例》这节课实际上是一节比例基本性质的应用课。在解比例中,要先根据比例的基本性质把含有未知项的比例式改写成方程,再运用解方程的方法解比例。在把含有未知项的比例式改写成方程时,要注意外项(或内项)乘积等于内项(外项)乘积的运用,不能用错。所以,在学习《比例的意义和基本性质》一课时,一定要让学生熟练掌握比例的基本性质。现在回顾这节课,知识点教授总体来说比较顺利,不过也有几个地方是值得反思和注意的:

  反思之一:变换思维,随机应变调整非预设生成。

  开始出示的第一个复习就使我始料未及。题目是这样的:口算每组中两个比的比值,再判断两个比能否组成比例。2:8和9:27;1/4:1/8和1/8:1/16。我出这道题目的用意本来是想出两个能组成比例的题目,但是其中的2:8和9:27因为比值不相等,不能组成比例,当学生口算出比值,说出不能组成比例时,我一时慌了,真懊恼备课之前没有先算一下,后面内容的顺序要被打散了,怎么办?能否补救?也许是急了吧!急中生智,我马上反应过来:如果改动其中一个数,再看能不能组成比例?这个问题一出,学生的脑筋立马转动起来,答案也随之即出:“把27改成36,这样9:36的比值也是1/4,这样两个比就能组成比例了。”回答的多好,我在为学生高兴的同时,也在为自己的小机智暗自庆幸!(不过以后可不要再犯哦)后来在讲到课后练习题时有这样一道题目:下面哪些组中的四个数可以组成比例?把组成的比例写出来(1)6、4、18和12;(2)4、5、6和8;(3)4、3、1/3和1/4;(4)3/5、1/5、9和3。此道练习题与我的复习小岔曲虽然形式不同,但细细品味也有异曲同工之处,都是锻炼学生判断几个数能否组成比例。

  反思之二:抓住重点,顺水推舟解决非预设生成。

  复习“根据比例的意义,在括号里填上合适的数。3:5=6:();()/15=2/5”时,要学生说一说是怎样想的?这题的要求是根据比例的意义来解答的,但是有一位学生没有运用比例的意义来回答我,她用的是比例的基本性质,用5×6算出两个内项的积再除以一个外项3等于另一个外项10,虽然她没有明确说用两个内项相乘的积等于两个外项相乘的积来解答,但她说出了其中的意思,这不就是本节新课的重点所在吗,现在被她提前说出来了,这说明该同学已经熟练的掌握了比例的基本性质,学生已经能运用比例的基本性质来求一个未知项了,这不正是我所希望他们掌握的么?顺水推舟,应该及时调整教案,直接进入今天的新授重点,不过我今天却没有这么做,这说明我对教材和教案的把握程度还不够,没有做到胸有成竹。

8、六年级下册《解比例》教学反思

  教材的重点是解比例,难点是解比例的方法,在本节课中我主要采用的是合作探究的方法。

  解比例的方法与解一般方程的方法是有所区别,解比例的第一步都是要根据比例的基本性质,把比例转化为乘积相等的方程。再解整数比或小数比时,两边同时除以未知数的系数时,含有未知的左边,不再书写除以这个系数,直接写未知数。我所选择的是各具特征的练习,有的适于用比例的意义解决,有的用比例的基本性质解决比较简单。从学生的回答中,可以发现多数学生能用以前学过的知识正确解决问题,做到有理有据。对于学生多样的解答方法我给予充分的肯定。但还应该对各种方法的优劣引导学生进行优化,这样会对学生下面的学习有更大的帮助。

  我们应当努力使学生自己去发现兴趣的源泉,去体验发现数学规律和应用数学规律的乐趣。在练习中,我组织学生自己去观察去发现数学知识,并应用它去解决相关数学问题,使学生真正体验到数学的理智高于事实与现象的“权力感”。

9、六年级下册《解比例》教学反思

  今天教学了《解比例》,这节课实际上是一节比例基本性质的应用课。在解比例中,要先根据比例的基本性质把含有未知项的比例式改写成方程,再运用解方程的方法解比例。在把含有未知项的比例式改写成方程时,要注意外项(或内项)乘积等于内项(外项)乘积的运用,不能用错。课后回顾这节课,虽然总体来说比较顺利,但也有值得反思的地方。

  一、部分学生没有掌握好比例的基本性质,在解比例时胡乱解比例,不是把两个外项相乘,也不是把两个内项相乘,而是“打乱仗”……这部分学生学习目的不明确,学习动力不足,对学习没有兴趣,对于这样的学生教师要有更多的耐心和理性对待,否则丝毫不会有效果。

  二、部分学生在应用方程的知识解比例时遇到了较大的困难,其原因是四。五年级学解方程的知识时有疏突知识掌握有欠缺,不懂得应用加。减。乘。除法各部分之间的关系去解题。对于这部分学生要进行补课,让他们熟悉加减乘除法各部分之间的关系。

  三、对于学生来说,及时的'鼓励、表扬,使其得到更充分的情感体验,对他们的发展会起积极的作用,由于事先没料到以上两问题,在备课时准备得不是很充分,在上课时也没有及时有效地做好调整,让学生自我发挥,交流讨论的机会较少。所以有些遗憾。

10、六年级数学《正比例和反比例》的教学反思

  我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。

  为什么加变化的量、画一画、探究与发现等内容?

  由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。

  其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的'作业中找到答案。

  其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。

  小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。

  初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。

  高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。

  到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。

11、六年级下册二单元《正比例和反比例》教学反思

  我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。

  为什么加变化的量、画一画、探究与发现等内容?

  由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。

  其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的'经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。

  北师大六年级下册二单元《正比例和反比例》教学反思

  更多资源

  其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。

  小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。

  初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。

  高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。

  到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。

相关文章

推荐文章