七年级《解一元一次方程——移项》教学设计一等奖
1、七年级《解一元一次方程——移项》教学设计一等奖
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:
利用移项解一元一次方程。
五、教学难点:
移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决“分配问题”应用题的列方程的`基本要点:
A.找出能贯穿应用题始终的一个不变的量.
B.用两个不同的式子去表示这个量.
C.由表示这个不变的量的两个式子相等列出方程.
设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.
师:解一元一次方程中“移项”起了什么作用?
(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1
(综合训练) 解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了??????。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是( )
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2
C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。
设计意图:让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
2、七年级《解一元一次方程——移项》教学设计一等奖
作为一名老师,很有必要精心设计一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编为大家整理的七年级《解一元一次方程——移项》教学设计范文,欢迎阅读,希望大家能够喜欢。
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标
1、知识与技能:(1)找相等关系列一元一次方程。(2)用移项解一元一次方程。(3)掌握移项变号的基本原则。
2、过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3、情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点
利用移项解一元一次方程。
五、教学难点
移项法则的探究过程。
六、教学过程
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )。
A、3个老头,4个梨 B、4个老头,3个梨 C、5个老头,6个梨 D、7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1、理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型的一元一次方程。
2、会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的`教学重难点。
(三)导教导学
1、出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2、学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的`、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3、交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本、这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25。(板书)
【总结提升】解决“分配问题”应用题的列方程的基本要点:
A、找出能贯穿应用题始终的一个不变的量。
B、用两个不同的式子去表示这个量。
C、由表示这个不变的量的两个式子相等列出方程。
设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数。
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书)把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质1、即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式。
师:解一元一次方程中“移项”起了什么作用?
(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式。(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改。
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1。
(综合训练) 解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为。
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1、下列方程变形正确的是( )
A、由-2x=6, 得x=3
B、由-3=x+2, 得x=-3-2
C、由-7x+3=x-3, 得(-7+1)x=-3-3
D、由5x=2x+3, 得x=-1
2、一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3、(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示。
设计意图:让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
3、七年级《解一元一次方程——移项》教学设计一等奖
教材分析
合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。
学生分析
学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。
【教学目标】
(一)知识技能
1.掌握解方程中的合并同类项.
2.理解并掌握移项变号法则进行解方程.
3.灵活的运用移项变号法则解决一些实际问题.
(二)数学思考
使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.
(三)解决问题
能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.
(四)情感态度
解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力
【教学重点】
利用合并同类项、移项变号法则解方程.
【教学难点】
合并同类项 、移项变号法则.
【学习过程】
一、新课导入
1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。
2.引导学生探索新知
问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?
【师生活动】
教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。 请说出你的理由?
学生:我准备用方程解决这个问题。用方程解比较简单,设出的未知数就可以当成已知的条件来用了。
教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。
学生:先设出未知数,因数去年的数量和前年的数量有关,今年的数量又和去年数量有关,因此设前年购买新桌椅x套,可以表示出:去年购买了2x套,今年购买了6x套。
教师:未知数设了,下一步应该做什了呢?
学生:列方程。
教师:列方程的根据是什么?
学生:相等关系是,前年购买的桌椅+去年买的桌椅+今年买的桌椅=270套。
教师:谁说一下?
学生:x+2x+6x=270
教师:请同学们仔细观察等号左边的三个代数式有什么特点?
学生:都含有字母x,并且x的指数相同都是1.
教师:我们在第二章的内容中学习了,具有这们特点的式子我们把它们叫什么?
学生:同类项。
教师:提到同类项了,我们就会想到什么?
学生:合并同类项
教师:谁还记得怎么合并同类项?
学生:同类项的系数相加减,字母和字母的指数不变。
教师:我们共同说一个x+2x+6x合并后的结果为
学生:9x
教师:此时方程就变成了9x=270,我们要求的是x而不是9x,如何求出x?
学生:根据等式性质2两边都除以9,得到x=30
活动:从上述方程的解决你能发现什么?
教师:同学们仔细观察原来9x的系数是9,后来根据等式的性质2两边都除以9后得到了x,此时x的系数是1,这个过程我们把它叫做系数化为1。“系数化为1”指的是使方程的一边ax化为x现在我们把这个问题解决了,请同学们仔细回忆一下我们是怎么做的。这里可能还有其他设未知数的方法(比如设今年的为x台)若出现这种情况,请同学分析比较多种解决方案中的简易,找到最简方法.
教师:请同学们思考上面解方程中“合并同类项”起了什么作用?
学生:起到了化简的作用。
教师:出示例题-3x+0.5 x=10
学生:在练习本上做,然后集体订正。
巩固练习:第89页 练习的(2)(4).
二、问题引申、共同探究
让学生在活动中发现移项变号法则,培养学生用方程的意识解决数学中的实际的。
问题2: 把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问这个班有多少名学生?
学生活动:
学生独立思考,发现若设这个班有x名学生。
每人分4本时,共分出书的总数为4x ,加上剩余的'2本,这些书的总数为(4x+2)本。
每人分5本时,需要书的总数为5x本,减去缺的5本,这些书的总数是(5x-5)
于是这些书有两种表示方法,书的总数不变,根据这个等量关系,得到方程4x+2=5x-5.
教师活动设计:让学生体会运用方程的优点,同时学生可能发现多种解决方案(比如设数的总数是x,则可以列出相应的方程)同样让学生进行比较,发现最佳方法.
思考:对于方程4x+2=5x-5两边都含有x,如何把它向x=a的形式转化?
学生活动设计:学生主动探究解决问题的方法,为了达到解方程的目的,可以运用等式性质1,把等式的两边同时减去5x,则等号的右边没有了x的项4x-5x+2=-5,再把等式的两边同时减去2,则方程的左边没有了常数项,于是得到4x-5x=-5-2,然后转化为我们所熟悉的形式,进行合并便可以解决该问题了。
教师活动设计:在学生解决问题的过程中,让学生自己观查发现变形的特点,从而让他们总结出移项变号.
活动:让学生观察由方程4x+2=5x-5得到方程4x-5x=-5-2的这一过程,你们能发现什么?
师生共同归纳:
把等式的一边的某项变号后移到另一边,叫作移项(依据是等式性质1).
教师:上面解方程中“移项”起了什么作用?
学生:自由发言
教师:解释“对消”与“还原”就是指“合并同类项”和“移项”
三、巩固练习
应用移项与合并同类项解方程,进一步深化解方程的过程。
例: 解下列方程.
(1)3x+5=4 x+1; (2)9-3y=5y+5 ; .
学生活动设计:找两个学生上黑板板演,在板演后,让学生对以上同学的做法进行评价,寻找问题所在,表达问题产生的原因,找到正确的方式方法.
教师活动设计:引导学生对解方程的过程进行独自体验,进一步感受解方程的过程.
〔解答〕(1)移项,得
3x-4x=1-5,
合并同类项,得
-x=-4,
系数化为1,得
x=4.
〔解答〕(2)移项得,
-3y-5y=5-9,
合并得,
-8y=-4,
系数化为1得,
四、拓展应用
解决实际问题,培养学生思维的深刻性
问题1:老师的学校距离林东镇20公里,公共汽车行驶0.5小时正好走完全程,求公共汽车的平均速度.
问题2:如果老师的学校距离林东镇20公里,公共汽车0.5小时所走的路程大于全程,求公共汽车的平均速度.能不能用方程来解答?为什么?
【师生活动】
学生口头解答问题1,尝试解答问题2,并在小组内交流讨论.
教师引导学生通过对问题2的思考,归纳、概括出列方程解实际问题的关键为:找相等关系.
教师要重点关注学生能否根据方程的定义想到列方程解应用题要找相等关系.
【设计意图】
通过对问题1的解答,使学生回顾列方程解应用题的六个步骤.同时使学生认识到方程是解决实际问题的一种工具.
通过对问题2的探究,使学生知道为什么列方程解应用题要找相等关系,使学生经历知识的形成过程.最终达到知其然知其所以然的目的.
例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度。
解:设船在静水中的平均速度为x千米/小时,
则顺流的速度为 千米/时;逆流的速度为 千米/时.
顺流的路程= ,逆流的路程 .
相等关系为
思考:
1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?
2.怎样求甲乙两个码头之间的距离?
【师生活动】
学生自主完成空白部分,完成后组内交流.为下节课的内容做基础。
教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.
学生独立列方程并解方程.
教师找部分学生板演并讲解思路.
教师关注学生能否正确解方程.
【设计意图】
通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引领,降低问题的难度,从而将难点锁定在找相等关系上.避免难点太多,造成无从下手,重点、难点不突出的情况.利于学生形成正确的思维过程.
五、课堂小结
学生谈本节课的收获,教师进行总结。
六、作业布置
必做题:课本93页1、3题
选做题:
1.洗衣机厂今年计划生产洗衣机25 500台,其中 Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为 1:2:14,这三种洗衣机计划各生产多少台?
2.用一根长60m 的绳子围出一个矩形,使它的长是宽的1.5倍,长和宽各应是多少?
板书设计:
解一元一次方程
1.合并同类项起的作用:化简
2.移项:把等式一边的某项变号后移到另一边,叫做移项。
注意:移项变号。
例1(1)移项,得
3x-4x=1-5,
合并同类项,得
-x=-4,
系数化为1,得
x=4.
七、教学反思
实施开放式教学,倡导自主探索、合作交流的学习方式。让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法。教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念。
4、七年级《解一元一次方程——移项》教学设计一等奖
一、教学目标
1、 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、 培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、
建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的.和等于54; (2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;(2) (27-x)=4x.
列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1) 列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1) 12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.
(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、 本节课我们学了什么知识?
2、 你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、 必做题:第84--85页习题3.1第1,5题。
2、 选做题:根据下列条件,用式表示问题的结果:
(1) 一打铅笔有12支,m打铅笔有多少支?
(2) 某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
(七)板书设计
一元一次方程
1、 定义
2、 例
3、 练习
5、七年级《解一元一次方程——移项》教学设计一等奖
作为一名优秀的教育工作者,时常要开展教学设计的准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那要怎么写好教学设计呢?下面是小编精心整理的七年级《3.1.1 一元一次方程》教学设计,仅供参考,欢迎大家阅读。
教学目标
1、了解方程的概念和一元一次方程的概念;
2、知道什么是解方程,会检验某个值是不是方程的解;
3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。
教学重点
1、一元一次方程的概念及方程的解;
2、能验证一个数是否是一个方程的解。
教学难点
寻找问题中的等量关系,列出方程。
教学过程
一、情景诱导
同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的体重吗?
如果设大象的`体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。
要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。
二、自学指导
学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。
附:自学提纲: 1、什么是方程?请举出1—2个例子。未知数通常用什么表示?
2、什么是一元一次方程?请举出1—2个例子。
3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?
4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?
5、什么是解方程?
三、展示归纳
1、请有问题的同学逐个回答自学提纲中的问题,生说师写;
2、发动学生进行评价、补充、完善;
3、教师根据展示情况进行必要的讲解和强调。
四、变式练习
1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。
附:变式练习
1、下列各式中,哪些是一元一次方程?
(1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1
(7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1
2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。
3、已知关于X的方程2X 《3.1.1一元一次方程》教学设计(修改稿和原稿) +3=0为一元一次方程,求k的值。
4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是
5、设某数为x,根据题意列出方程,不必求解:
(1)某数比它的2倍小3;
(2)某数与5的差比它的2倍少11;
(3)把某数增加它的10%后恰为80.
6、若x=1是方程kx-1=0的解,则k= .
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。
六、布置作业
课本83页习题3.1 第1题。
6、七年级数学上册《解一元一次方程——去分母》教学反思
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是①解方程中的“去分母”,②根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的`求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:①部分学生不会找各分母的最小公倍数,这点要适当指导,②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。
7、七年级数学上册《解一元一次方程-合并同类项与移项》教学反思
一、设计
1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?
2、让学生尝试解这两个方程:(1)x+2x+4x=140;(2)x+4=-6
3、学生做好后先分析第一个方程,左边做了什么变形?这样做起什么作用?再分析第二个方程,根据等式性质1由x+4=-6变形为x=-6-4发现数据怎么变化的?从而归纳出利用移项、合并同类项等方法解一元一次方程。
4、学生练习巩固、反馈。
5、最后小结收获与运用合并、移项的注意点。
二、反思
1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。因此在设计复习题时有意为后面做铺垫,一题多用。
2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的项归到方程的.同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。整个过程体现了化归的数学思想。
3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。
4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。
8、《解一元一次方程——去括号》优秀教学反思
本节课的数学安排是学习用去括号解一元一次方程,并初步根据实际问题列方程,本节课的重难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。
教学成功之处:1.复习巩固去括号法则有的放矢,恰到好处,能降低本节课的难度,如去括号①3x-7(x-1)= ②3-2(x+3)= ;本节学习解一元一次方程的重点是去括号,方法同以往一样。
②经历方程解决实际问题的过程,体会方程是现实世界的有效数学模型。
不足之处:教学过程中利用背景材料创设情境列一元一次方程来解实际问题。
片断:如某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
师:主要是引导生分析:设上半年每月平均用电X度,则上半年共用电 ,若下半年平均每月用电 度,则下半年共用电 度。
生:回答后列出方程;这个片断应该放手让生自己讨论,自己得出等量关系。最好让一两个学生上去讲解:你是怎么理解题意、怎么分析的,从而得出:
上半年每月用电量×上半年总月数+下半年每月用电量×下半年总月数=150000课后我反复思考,这块内容教师过于包办,得出结论有些勉强应该放手让学生讨论交流后得出一元一次方程,然后在解一元一次方程并作答,师只需加以强调。
总之这节课后我认为自己讲的过于详细,应当再精讲少讲,让学生尝试自己学习新知识,自己再运用新知识解决实际问题
总之,本节课后我认识到了要提高教育教学的有效值,教师备课时要深入教材,理解教材的编排意图,挖掘出本课的核心知识及思想方法,活用教材,据学科特点和实际学情精心设计出符合学生发展的教学内容。上课时要走出教材,注重教学的'基本技能和技巧,引导、指导学生尝试自己学习新知识,再运用新知识解决问题。在实施的过程中还要随时关注全体学生的发展,真真正正做到以人为本,以学生的发展为本。
教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将悉心耕耘,积极进取,博采众长,提高自己,让我教的每一个孩子更加优秀 。