教学设计一等奖

《运用乘法公式进行计算》第三课时教学设计一等奖

2023-06-21 12:35:17

  《运用乘法公式进行计算》第三课时教学设计一等奖

《运用乘法公式进行计算》第三课时教学设计一等奖

1、《运用乘法公式进行计算》第三课时教学设计一等奖

  作为一名教师,就不得不需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。优秀的教学设计都具备一些什么特点呢?下面是小编整理的《运用乘法公式进行计算》第三课时教学设计,仅供参考,希望能够帮助到大家。

  教学目标

  熟练地运用乘法公式进行运算。

  能根据多项式的特征正确选择相应的乘法公式进行计算。

  通过学习运用乘法公式进行运算,体会转化的数学思想,提高对乘法公式综合运用的能力,分析问题、解决问题的能力。

  在学习的过程中培养学生严谨、细致的学习态度。

  重点难点

  重点

  综合运用平方差和完全平方公式进行多项式乘法的运算。

  难点

  正确选择乘法公式进行运算。

  教学过程

  一、知识回顾

  1、请写出平方差公式和完全平方公式。

  2、运用乘法公式进行计算:

  (1) ;(2) ;(3) ;(4) .

  学生回顾乘法公式,通过计算,明确两个乘法公式的特征,并会选择合适的公式简化多项式的乘法运算:变形后,相乘的两个多项式如果有一项相同,另一项相反,用平方差公式;如果两项都相同,则用完全平方公式。

  二、新课讲解

  前面我们学习了完全平方公式、平方差公式,能简化一些多项式的乘法的运算,请同学们看下面的问题,怎样运算简便呢?

  (1) ;(2) .

  学生观察问题并思考、讨论能否运用乘法公式运算,老师可以提示学生考虑各题是否符合平方差公式、完全平方公式的特点,如不符合,能不能转化为平方差公式或完全平方公式?

  学生发表看法,并进行计算,最后老师做总结:改变运算顺序,或把某些项看成一个整体,这些是常见的变形方法,特别的,当相乘的'两个多项式有些项相同,而有些项相反时,可以通过添括号,把相同的项(或相反的项)看成一个整体,就可以转化成平方差公式的结构。

  三、典例剖析

  例1运用乘法公式计算:

  (1) ; (2)

  鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种运算方法最简洁。

  解:(1)解法一:

  解法二:

  (2)

  完成后引导学生总结将多项式变形的方法:改变运算顺序,添括号.

  例2 已知 , ,求代数式 的值.

  引导学生联想,已知和待求的代数式都与哪个乘法公式相关,于是想到将完全平方公式变形得到 ,这样就把待求的代数式转化成已知的代数式,问题获得解决.进一步训练学生灵活运用乘法公式的能力,让学生体会转化的数学思想.

  例3 一个正方形花圃的边长增加到原来的2倍还多1 ,它的面积就增加到原来的4倍还多21 ,求这个正方形花圃原来的边长.

  设原来的边长为 ,根据题意列出方程

  ,运用乘法公式可计算得解.

  训练学生在不同的背景下仍会运用乘法公式,增强

  运用知识的能力,也增强学好数学的信心.

  四、课堂练习

  1.运用乘法公式计算:

  (1) ; (2) ;

  (3) ; (4) .

  2.计算:

  (1) .

  3.一个正方形的边长增加2cm,它的面积就增加16 ,求这个正方形原来的边长.

  学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。

  五、小结

  师生共同回顾两个乘法公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈解决问题的感受。

  六、布置作业

  P50第5,6,8,9题

2、《运用乘法公式进行计算》第三课时教学设计一等奖

  您现在正在阅读的第三课时《两、三位数乘一位数的估算乘法》教案文章内容由收集!本站将为您提供更多的精品教学资源!第三课时《两、三位数乘一位数的估算乘法》教案教学内容:教科书第70页例2,练习十五第4,5,6题。

  教学目标:引导学生体验估算的过程,初步了解两、三位数乘一位数的估算方法,培养学生

  的.估算意识。

  教学过程:

  一、提出问题。

  1、、用多媒体幻灯片逐一出示各种图片。创设问题情境。引导学生提出用乘法计算问题。

  内容:邮局邮票出售处,有的邮票一枚80分,有的邮票一枚60分。

  百货商店鞋柜,一双旅游鞋78元,一双皮鞋164元。

  电影院售票处:日场一张电影票15元,夜场一张电影票20元。

  小袋鼠蹦跳一次约2米,小袋鼠蹦跳33次。

  文具商店柜台,每合图钉120个,每包日记本25本。

  2、出示教科书第70页例2主题图:

  三年纪一班29个同学去参观航天航空展览,门票每张8元。

  请学生提出问题,老师在学生提出问题的基础上,补充提出如果老师这时只带250元钱去够吗?

  二、尝试解决。

  1、教师先请学生猜一猜带250元够不够?再请学生思考怎么知道我们猜得对不对呢?看看小精灵是怎么说的?

  2、怎么才能知道829大约是多少呢?能不能用我们前面学过的计算方法来解决这个问题。

  3、启发学生想出前面我们已经学过整十乘一位数的乘法口算。我们可以把29看成最接近的整十数来估算。

  4、因为830﹦240,所以829的积比较接近240。我们可以列成829240。再由小精灵介绍约等号。

  可见带250元够买门票。

  三、拓展引伸

  估计下列几道乘法算式的积大约是多少?

  32649521845812

  组织学生小组讨论,然后全班交流,说明各应看成几百或几十。说明因数是三位数时,只要看成最接近的整百数既可。

  四、巩固练习。

  1、完成教科书第70页做一做中的4道题。先由学生独立计算,然后集体订正答案。结合订正答案的过程让学生说一说估算的过程。

  2、教科书第4题,让学生独立完成。

  3、同上课开始时呈现的几个问题情境和学生们提出的问题,让学生估算结果,找出答案。

  4、请学生举出几个日常生活中的例子。

  五、全课小结

  1、这节课开头我们碰到了什么问题。是怎么用数学的方法来解决的?

  2、上这节课,你有什么感受和体会?

3、《运用乘法公式进行计算》第三课时教学设计一等奖

  教学目标:

  1.巩固乘法的意义,进一步体会乘法与加法的关系。

  2.让学生根据乘法意义解决实际问题,培养学生应用所学知识解决问题的能力。

  3.在练习中体会到成功的快乐。

  教学重点:

  采用多种方式巩固乘法的意义。

  教学难点:

  采用多种方式巩固乘法的意义。

  教具学具:

  课件

  教学过程:

  一、情境导入

  师:同学们,前两节课,我们又认识了一种新的运算,是什么?(板书出来)

  你对乘法有了哪些了解呢?这节课我们来练习有关乘法的知识。

  二、探究新知

  1.基本训练

  师:请同学们开火车读出乘法算式。

  师:学生读乘法算式,注意不把乘读做乘以。

  师:请同学们看图独立填空。

  师:说一说你是怎么想的?注意数清楚一组有几个,有这样的几组?

  师:自己独立完成填空。

  师:比较(1)和(2)有什么相同?有什么不同?

  师:看图自己填空。

  师:注意单位名称是个。

  2.巩固练习

  师:自己先画一画,然后填一填。

  师:先写出算式,再自己读一读。

  师:注意几个几相加一般可以写成两个乘法算式,特殊的像:2个2相加、3个3相加,因为两个乘数相同,这样的只能写出一个乘法算式。

  师:下面这些加法算式,有的可以直接写成乘法算式,自己先做一做,然后和同桌内说说自己的想法。

  师:能直接写成乘法算式的`加法式子有什么共同的特点?

  师:自己完成下面各题,注意运算顺序。

  师:说一说上面这些题在计算的时候应该注意点儿什么?

  小结:同级运算按照从左往右的顺序计算,如果有小括号的算式要先算小括号里

  的运算。

  三、拓展延伸

  师:连一连

  师:这道题中有没有不能连线的?

  师:3+3+5和4+6,没有连线,为什么?是的,这两个加法算式不能用乘法算式表示。

  师:想一想一个乘法算式能写成几个加法算式?

  师:一个乘法算式一般能写成两个加法算式,特殊的像:44,55,这样的两个乘数相同的乘法算式,只能写出一个加法算式。

  师:自己先画一画,然后和同学交流一下。

  师:可以画出2个3或者3个2,都能用32表示;可以画5个4或者4个5都可以用54表示。

4、《运用乘法公式进行计算》第三课时教学设计一等奖

  在教学工作者开展教学活动前,就难以避免地要准备教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。写教学设计需要注意哪些格式呢?下面是小编为大家整理的《分数乘法》教学设计(第2课时),欢迎大家借鉴与参考,希望对大家有所帮助。

  教学内容:人教版小学数学教材六年级上册第3~5页例3、例4及相应练习。

  教学目标:

  1、通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2、通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3、通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:理解分数乘分数的乘法意义及算理。

  教学准备:课件、学生准备尺子。

  教学过程:

  一、复习铺垫,看图说分数

  1、(课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几?

  ()

  2、如果取这的,现在得到的是整个正方形的几分之几?(看图得出结论)

  3、如果再取这的,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图】讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。

  二、明确算理,探究算法

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1、求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2、等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3、学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4、进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固:

  把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。

  5、得出结果

  根据大家的想法,。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

  6、猜想计算方法

  观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

  【设计意图】尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。

  (二)探究几分之几乘几分之几的算理算法

  1、尝试猜想

  请你试着用这个方法解决第二个问题:求公顷的,用乘法算式表示就是。根据我们刚才的想法,结果应该是?(公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

  2、探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

  3、验证反馈

  (1)请几个采用不同验证方法的学生进行一一展示。

  (预计方法:A、画图(图形或线段);B、转化成小数再进行计算;C、利用分数的意义进行计算)

  (2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

  4、得出结论

  看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

  【设计意图】猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。

  (三)简化计算过程

  根据我们所得的结论,试着解决下面的问题:

  出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是千米/分。

  (1)李叔叔的游泳速度是乌贼的。李叔叔每分钟游多少千米?

  (2)乌贼30分钟可以游多少千米?

  1、读题,独立列式并解答。

  2、反馈:

  (1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

  (2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

  (3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

  3、练习:

  例4做一做1。

  【设计意图】培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

  三、练习巩固

  1、基础练习

  (1)先看数再计算(练习一6、7两题)

  反馈校对、纠错。

  在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

  预计错题,估计错例:由于4和的分子相同,学生有可能会将整数4与分子4相约分,在计算时,结果错算成。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的`分数),再进行计算。

  【设计意图】将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。

  (2)完成例3、例4做一做剩下的题

  反馈校对、纠错。

  在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

  2、练习提升

  在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

  ○○○○

  反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

  (1)题1、题3主要引导学生从分数乘法的意义来理解;

  (2)题2、题4主要是对分数计算方法的巩固。

  【设计意图】计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。

  四、总结

  这节课我们学习了什么?我们是怎样得出这些结论的?

  没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

  【设计意图】在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。

  五、布置作业

  练习一第4题至第7题

5、《运用乘法公式进行计算》第三课时教学设计一等奖

  学习内容:

  教科书P45

  学习目标:

  1、创设情境初步体会乘法含义,认识乘号,会读,写乘法算式。

  2、培养学生动手操作及语言表达能力,合作交流能力及团结协作的良好品质。

  学习重难点:

  重点:乘法的意义、读写乘法算式。

  难点:会把加法算式改写成乘法算式

  学习准备:

  学具:

  小棒

  教具:

  教学课件

  学习过程:

  一、创设情境,激情导入

  同学们,平时你们都去游乐场玩吗?都玩过什么?能说给老师听听吗?

  老师这也有一幅小朋友在游乐场玩的图,很可惜,不是小朋友们的,希望我们下次能一起去。

  你看,画中的小朋友正在做什么?

  是啊,他们很有秩序的在玩,有的两个两个一起坐,有的呢?如果要列出算式怎么列?

  2+2+2+2+2=10 ……

  二、探索新知

  1、摆小棒

  过山车,转椅我们在课上由于条件的限制我们不能玩,但是我们可以来摆小棒。

  你们能用小棒摆什么图形?你一分钟内能摆几个这样的图形?

  下面我们比一比,看谁在相同时间内摆的图形个数最多。

  2、你摆了几个图形?用了几根小棒,你是怎么计算的?

  让全体学生对自己摆的`图形进行列式。

  汇报

  汇报时,有意识让学生说几个几?

  学生列式时如果说出乘法算式,问其为什么这样列式。

  3、这样的加法算式,如果我摆了50个呢。这个加法算式写起来。你感觉怎样?有没有简便的方法呢?学生如果回答的出,请学生试讲。

  数学家们为了可以简便的进行计算,发明了乘法。

  5个2,就可以写做2×5,或5×2

  它可以表示5个2相加。

  教学算式的读法和写法。

  4、讨论:是不是所有的加法算式都可以改写成乘法算式?

  什么样的加法算式可以改写成乘法算式?

  5、把自己列出的加法算式改写成乘法算式。

  三、总结提高

  认识了乘法,也会读会写乘法算式,学到这,你有什么问题要问吗?你还想知道有关乘法的哪些知识?

  1、出示电脑图,教室里有几台电脑,你打算几个几个数?有几个几?可以怎样列式?

  2、讲加法算式改写成乘法算式。并读给同桌听。

  四、总结:

  通过这节课的学习你有那些收获?找一找,生活中还有那些情况我们可以用乘法解决?

6、《分数乘法应用题》第一课时的教学反思

  在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的必要性。同时有以下想法。

  画线段图现在就应该加强。

  学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的学习打好基础。

  加强对表示两者关系的分数的理解。

  虽然学生能够结合线段图理解分数的含义。我觉得还是不够的,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的`认识。

  继续巩固求一个数的几分之几用乘法。

  让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的过程。我觉得是非常非常重要的环节。抓住练习题中有代表性的问题加强巩固。

7、七年级数学《乘法公式》的教学反思

  根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。

  在八年级的数学(上)中的《整式的乘除》中,我们遇到了《平方差与完全平方公式》的教学任务。根据过往学生的认识过程来看,学生的定向思维就认为(a+b)2=a2+b2,而且还是根深蒂固的,那么如何在教学中转变或是加深学生对此公式的正确认识呢? 在课前,我想了很多方法,也参考一些兄弟学校的做法,我尝试用两种教学方法做个试验,看学生的接受情况如何。

  方法一:数形结合——面积与代数恒等式的学习

  从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的试验中发现、归纳公式。本课中,本想让学生课前先做好纸片,然后再堂上小组合作,探究公式。但是按学生的.学习习惯来看,这课前的要求怕难落实,因而我改用了课件,用学生看屏幕观察和小组合作完成学卷的方式完成教学。

  教学环节:(学生观察、小组合作归纳) 问题1:首先请你仔细观察下图,你能用下面的图解释两数 和乘以它们的差公式吗?

  问题2:请你组员一起合作,仿照问题1的方法,

  表示(a+b)2与(a-b)2的几何图形。

  就这两个问题,学生用了一节课完成。中间的学生活动,老师还是讲的比较多,因此答案也比较一律了,当然这与学生的学习能力有关。不过,学生总算明白两公式的几何意义了,这也算是本节课最大的收获了。但学生对公式的理解还是半熟。

  方法二:数值验算——利用数值计算归纳公式

  此方法可以说比较老套,但是对学生来说,可能容易接受。我的设计是这样的:

  请把五组数 的值分别输入下图的两个数值转换机,比较两个输出结果,你发现什么?这说明了什么?

8、七年级数学下册《乘法公式》教学反思

  根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。

  在北师大版八年级的数学(上)《整式》中,我们遇到了《平方差与完全平方公式》的教学任务。根据过往学生的认识过程来看,学生的定向思维就认为(a+b)2=a2+b2,而且还是根深蒂固的,那么如何在教学中转变或是加深学生对此公式的正确认识呢?在课前,我想了很多方法,也参考一些兄弟学校的做法,我尝试用两种教学方法做个试验,看学生的接受情况如何。

  方法一:数形结合——面积与代数恒等式的学习

  从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的试验中发现、归纳公式。本课中,本想让学生课前先做好纸片,然后再堂上小组合作,探究公式。但是按学生的学习习惯来看,这课前的要求怕难落实,因而我改用了课件,用学生看屏幕观察和小组合作完成学卷的方式完成教学。

  教学环节:(学生观察、小组合作归纳) 问题1:首先请你仔细观察下图,你能用下面的图解释两数 和乘以它们的差公式吗?

  问题2:请你组员一起合作,仿照问题1的`方法,

  表示(a+b)2与(a-b)2的几何图形。

  就这两个问题,学生用了一节课完成。中间的学生活动,老师还是讲的比较多,因此答案也比较一律了,当然这与学生的学习能力有关。不过,学生总算明白两公式的几何意义了,这也算是本节课最大的收获了。但学生对公式的理解还是“半熟”。

  方法二:数值验算——利用数值计算归纳公式

  此方法可以说比较老套,但是对学生来说,可能容易接受。我的设计是这样的:

  请把五组数的值分别输入下图的两个数值转换机,比较两个输出结果,你发现什么?这说明了什么?

9、《乘法分配律》与《乘法结合律》对比教学反思

  作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思能很快的发现自己的讲课缺点,那么写教学反思需要注意哪些问题呢?以下是小编帮大家整理的《乘法分配律》与《乘法结合律》对比教学反思,欢迎阅读,希望大家能够喜欢。

  1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。

  乘法分配率的结构特点,即两数的'和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。

相关文章

推荐文章