班主任工作总结

初中数学知识点总结视频7篇

2023-07-12 15:32:04

  初中数学知识点总结视频7篇

初中数学知识点总结视频7篇

初中数学知识点总结视频第1篇

  一、正数和负数

  1、以前学过的0以外的数前面加上负号—的数叫做负数。

  2、以前学过的0以外的数叫做正数。

  3、零既不是正数也不是负数,零是正数与负数的分界。

  4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。

  二、有理数

  1、正整数、0、负整数统称整数,正分数和负分数统称分数。

  2、整数和分数统称有理数。

  3、把一个数放在一起,就组成一个数的集合,简称数集。

  三、数轴

  1、规定了原点、正方向、单位长度的直线叫做数轴。

  2、数轴的作用:所有的有理数都可以用数轴上的点来表达。

  3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。

  (2)正数都大于零,负数都小于零,正数大于负数。

  四、相反数

  1、只有符号不同的两个数叫做互为相反数。

  2、数轴上表示相反数的两个点关于原点对称。

  3、零的相反数是零。

  五、绝对值

  1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  六、有理数的大小比较

  1、正数大于0,0大于负数,正数大于负数。

  2、两个负数,绝对值大的反而小。

  七、有理数的加法

  1、有理数的加法法则

  (1)号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  (3)互为相反数的两个数相加得零。

  (4)一个数同零相加,仍得这个数。

  2、有理数加法的运算律

  (1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a

  (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  八、有理数的减法

  1、有理数减法法则

  减去一个数,等于加这个数的相反数。即a—b=a+(—b)

  九、有理数的乘法

  1、有理数的乘法法则

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘。

  (2)任何数同0相乘,都得0。

  (3)乘积是1的两个数互为倒数。

  (4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  (5)几个数相乘,有一个因数为零,积就为零。

  2、有理数的乘法的运算律

  (1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba

  (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)

  (3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac

  十、有理数的除法

  1、有理数除法法则

  (1)除以一个不等于0的数,等于乘这个数的倒数。

  (2)零不能作除数。

  (3)两数相除,同号得正,异号得负,并把绝对值相除。

  (4)0除以任何一个不等于0的数,都得0。

  十一、有理数的乘方

  1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  2、负数的奇次幂是负数,负数的偶次幂是正数。

  3、正数的任何次幂都是正数,0的任何正整数次幂都是0。

  十二、有理数混合运算的运算顺序

  1、先算乘方,再算乘除,最后算加减;

  2、同极运算,从左到右进行;

  3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

  十三、科学记数法

  1、把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的'是科学记数法。

  2、用科学记数法表示一个n位整数,其中10的指数是n—1。

  十四、近似数和有效数字

  1、接近实际数目,但与实际数目还有差别的数叫做近似数。

  2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

  3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

  4、对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。

初中数学知识点总结视频第2篇

  第二章整式的加减

  2、1整式

  1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、

  2、单项式的系数:是指单项式中的数字因数;

  3、单项数的次数:是指单项式中所有字母的指数的和、

  4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、

  5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、单项式和多项式统称为整式。

  2、2整式的加减

  1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

  3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

  6、整式加减的一般步骤:

  一去、二找、三合

  (1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类项葫芦岛

初中数学知识点总结视频第3篇

  1.一元一次方程:

  只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:

  ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a≠0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

初中数学知识点总结视频第4篇

  一元一次方程定义

  通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

  一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

  即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

  一元一次方程的五个核心问题

  一、什么是等式?1+1=1是等式吗?

  表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

  一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

  等式与代数式不同,等式中含有等号,代数式中不含等号。

  等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

  二、什么是方程,什么是一元一次方程?

  含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

  只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

  凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

  三、等式有什么牛掰的基本性质吗?

  将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

  移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

  去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

  四、等式一定是方程吗?方程一定是等式吗?

  等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的.说法是不对的。

  五、"解方程"与"方程的解"是一回事儿吗?

  方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

初中数学知识点总结视频第5篇

  一、圆

  1、圆的有关性质

  在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

  由圆的意义可知:

  圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

  就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

  圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧。小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

  圆心相同,半径不相等的两个圆叫同心圆。

  能够重合的两个圆叫等圆。

  同圆或等圆的半径相等。

  在同圆或等圆中,能够互相重合的弧叫等弧。

  二、过三点的`圆

  1、过三点的圆

  过三点的圆的作法:利用中垂线找圆心

  定理不在同一直线上的三个点确定一个圆。

  经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

  2、反证法

  反证法的三个步骤:

  ①假设命题的结论不成立。

  ②从这个假设出发,经过推理论证,得出矛盾。

  ③由矛盾得出假设不正确,从而肯定命题的结论正确。

  例如:求证三角形中最多只有一个角是钝角。

  证明:设有两个以上是钝角。

  则两个钝角之和>180°

  与三角形内角和等于180°矛盾。

  不可能有二个以上是钝角。

  即最多只能有一个是钝角。

  三、垂直于弦的直径

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

  推理2:圆两条平行弦所夹的弧相等。

  四、圆心角、弧、弦、弦心距之间的关系

  圆是以圆心为对称中心的中心对称图形。

  实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

  顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

  定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

  推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

  五、圆周角

  顶点在圆上,并且两边都和圆相交的角叫圆周角。

  推理1:同弧或等弧所对的圆周角相等。同圆或等圆中,相等的圆周角所对的弧也相等。

  推理2:半圆(或直径)所对的圆周角是直角。90°的圆周角所对的弦是直径。

  推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初中数学知识点总结视频第6篇

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的`规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点总结视频第7篇

  相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。下面是小编为大家带来的初中数学相似三角形定理知识点总结,欢迎阅读。

  相似三角形定理

  1.相似三角形定义:

  对应角相等,对应边成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

  3.相似三角形的相似比:

  相似三角形的对应边的比叫做相似比。

  4.相似三角形的预备定理:

  平行于三角形一边的直线和其他两边(或两边的`延长线)相交,所截成的三角形与原三角形相似。

  从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边

  成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

  (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

  7.相似三角形的性质定理:

  (1)相似三角形的对应角相等。

  (2)相似三角形的对应边成比例。

  (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

  (4)相似三角形的周长比等于相似比。

  (5)相似三角形的面积比等于相似比的平方。

  8. 相似三角形的传递性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

相关文章

推荐文章