小学二年级数学下册知识点总结8篇
小学二年级数学下册知识点总结第1篇
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它能使我们及时找出错误并改正,我想我们需要写一份总结了吧。那么我们该怎么去写总结呢?以下是小编为大家整理的六年级下册数学第二单元重点知识点总结,仅供参考,大家一起来看看吧。
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的'面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h + 2×πr2
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh或πr2×h÷3
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学二年级数学下册知识点总结第2篇
本单元与第二单元考察内容大同小异。
第五单元混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分步计算,也可以列综合算式。
4、带小括号运算的类型:
方法:算式里有括号的,要先算括号里面的。
5.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。
当需要替换的是第二个数,必要时还需要加上小括号。
第六单元有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
(2)至少问题(进一法):商+1
22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
(3)最多问题(去尾法)
茵苗有10元,每个面包3元,茵苗最多能买几个?
本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。
第七单元万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
5、认识算盘,一颗上珠是5,一颗下珠是1。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;
最小三位数是100,最大的三位数是999;
最小四位数是1000,最大的四位数是9999;
最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如999<1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。
第八单元克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克1kg=1000g.进率是1000。
5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。
第九单元数学广角-推理
1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。
推理时,先根据条件确定必然情况,再用排除法确定其他情况。
2、填数游戏和扫雷游戏
当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。
此外,还可以做一些加减混合、乘加、乘减的应用题。
小学二年级下册数学必背内容
(一)有余数的除法
①商要对着被除数的个位。②余数要比除数小。
被除数÷除数=商…….余数
被除数=除数×商+余数
1、()÷()=5……6,除数最小是(),被除数最小是()。
2、在应用题中,余数单位和被除数单位相同。
(二)万以内数的认识
1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。
2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。
3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.
4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.
5、读数、写数都从高位起。
(三)长度单位
1、1千米=(1000)米
1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,
1米=(100)厘米,1分米=(100)毫米。
2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。
3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;
(2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。
4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。
5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。
(四)三位数的加法和减法
1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。
2、加数=和-另一个加数
被减数—减数=差
被减数=减数+差
减数=被减数-差
3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。
(五)图形
1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的.边叫宽(2条宽)。
2、正方形:(四条边)都相等,4个角都是(直角)。
3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。
(六)时间单位
1、钟面上有(12)个大格,(60)个小格。
时针走(1大格)是(1时);
分针走(1小格)是(1分),走一大格是(5分)。
秒针走(1小格)是1秒,走一大格是(5秒)。
2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。
3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。
4、结束时间-开始时间=经过时间
结束时间-经过时间=开始时间
开始时间+经过时间=结束时间
5、在求时间时,可以列竖式计算。
减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。
加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。
7时10分-3是50分=()2时40分+3时50分=()
6、通常下午的时间转化成24时计时法,例如
下午3时20分就是(15时20分)
7、描述50米、100米跑步的时间要用(秒)作单位。
8、时针从数字3走到数字8经过时间是()。
分针从数字3走到数字8经过时间是()。
秒针从数字3走到数字8经过时间是()。
小学二年级数学下册知识点总结第3篇
总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以帮助我们有寻找学习和工作中的规律,因此十分有必须要写一份总结哦。总结怎么写才不会流于形式呢?以下是小编帮大家整理的三年级下册数学知识点总结,欢迎阅读,希望大家能够喜欢。
(一)年、月、日
1、常用的时间单位有:(年、月、日)和(时、分、秒)。
2、重要的日子:1949年10月1日,中华人民共和国成立。
1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节
3、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)
可借助歌谣记忆:
一、三、五、七、八、十、腊(即十二月),
三十一天永不差。
四六九冬三十天,只有二月二十八。
每逢四年闰一日,一定要在二月加。
4、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。
(1)季度:(一年分四季度,每3个月为一个季度)
一、二、三月是 第一季度(平年有90天,闰年有91天),
四、五、六月是 第二季度(有91天),
七、八、九月是 第三季度(92天),
十、十一、十二月是 第四季度(有92天)。
(2)会计算每个季度有多少天,连续几个月共有多少天。连续两个月共62天的是:7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:7月和8月。
(3)给出一个天数会计算有几个星期零几天。
如:第三季度有(92)天,有(13 )个星期零( 1)天。平年全年有(365)天,是(52 )个星期零(1)天。
(4)公历年份是4的倍数的一般都是闰年:一般情况下可以用年份除以4的方法判断平年闰年。年份除以4有余数是平年,没有余数是闰年。
如:1978÷4=494……2,1978年是平年。
1988÷4=497,1988年是闰年。
(5)公历年份是整百数的必须是400的倍数才是闰年。
如1900年是平年,20xx年是闰年。
5、经过的天数的计算:
公式:结束时间—开始时间 + 1
例如:6月12到8月17日是多少天?
6月12日~~6月30日 30-12+1=9(天)
7月有:31(天) 8月1日~~8月17日 有:17(天)
9+31+17=57(天)
6、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。
如:小华1994年6月出生,到今年6月(15岁)。小华今年12岁,他是(1997年)出生的`。
7、通常每4年里有( 1 )个闰年, ( 3 )个平年。
(如果说某个人不是每年都能过到生日,8岁过两次生日,12岁过3次生日,那么他的生日就是2月29日。)
8、推算星期几的方法:
例如:已知今天星期三,再过50天星期几?
解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期三往后数一天,即星期四。
9、会计算到今年经过的年份:就用20xx - 给的年份
例如:中华人民共和国成立于1949年10月1日,到今年建国多少周年?
熟记中华人民共和国建国的时间是1949年10月1日;
算式:20xx-1949=64(年)
(二) 24计时法
1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)
2、24时计时法:就是把一天分成24时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。
3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。
如:
普通计时法 24时计时法
上午9时 === 9时或9:00
晚上9时 === 21时或21:00
4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。
比如:16时等于16 - 12 = 下午4时。(必须加前缀)
5、计算经过时间,就是用结束时刻减开始时刻。
结束时刻-开始时刻=时间段(经过时间)
比如:10:00开始营业,22:00结束营业,
营业时间为:22:00—10:00=12(小时)
★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)
比如:某商品早上8:00开始营业,下午6:00停止营业,一天营业多少时间?
下午6:00=18:00 18:00 - 8:00 = 10(小时)
6、认识时间与时刻的区别:(时间是一段,时刻是一个点)
如:火车11:00出发,21时30分到达,火车运行时间是(10时30分),注意不要写成(10:30)。
正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
7、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期
四,制作5月份月历。
制作年历步骤:
第一:确定1月1日是星期几;
第二:确定12个月怎样排列,
第三:把休息日用另外的颜色标出来。
8、时间单位进率:
1世纪=100年
1年 =12个月
1天(日)=24小时
1小时=60分钟
1分钟=60秒钟
1周=7天
三年级下册数学知识
第一单元位置与方向
1、①(东与西)相对,(南与北)相对,
(东南—西北)相对,(西南—东北)相对。
②清楚以谁为标准来判断位置。
③理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。
(做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。
4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5.、生活中的方位知识:
①北斗星永远在北方。
②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
三下数学期中复习知识
小数的初步认识
1、小数的意义:像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。
2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。
例如:127.005读作:一百二十七点零零五。
3、小数与分数的关系、互换。小数不同表示的分数就不同。
例如:0.5=5/10 0.50=50/100
4、运用元/角/分、米/分米/厘米的知识写小数;把7角、7分改写成以元作单位的小数。
5、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1
把“单位1”平均分成100份,每份是它的百分之一,也就是0.01
6、分母是10的分数写成一位小数(0.1),
分母是100的分数写成两位小数(0.01)。
7、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。
8、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。
9、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。
10、小数加减法计算:。
(尤其注意:12-3.9; 9+8.3 等题的计算。)
11、小数不一定比整数小。
(如:5.1 >5 ;1.3 > 1等)
三下数学期中复习知识点(数学广角)
简单的排列:有序排列才能做到不重复、不遗漏。
简单的组合:组合问题可以用连线的方法来解决。
组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。
★数学考试应注意:
1、用手指着认真读题至少两遍;
2、遇到不会的题不要停留太长时间,可在题目的前面做记号。(如:“?”)
3、画图、连线时必须用尺子;
4、检查时,要注意是否有漏写、少写的情况。
小学二年级数学下册知识点总结第4篇
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,为此我们要做好回顾,写好总结。总结怎么写才不会千篇一律呢?下面是小编精心整理的四年级上册数学第二单元知识总结,欢迎阅读,希望大家能够喜欢。
1、 直线:可以向两端无限延伸;没有端点。读作 :直线AB或直线BA。 线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。 射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)
2、画直线。 过一点可画无数条直线;过两点能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
3、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
4、在同一平面内,永不相交的两条直线叫做平行线
5、平行线的画法。 (1)固定三角尺,沿一条直角边先画一条直线。 (2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。 (3)沿一条直角边在画出另一条直线。
6、当两条直线相交成直角时,这两条直线互相垂直。这两条直线的交点叫做垂足。(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。)
7、 画垂线: (1)过直线上一点画垂线的方法。 把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。注意,要让三角尺的直角顶点与给定的点重合。 (2)过直线外一点画垂线的方法。 把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的'另一条直角边画直线,这条直线就是前一条直线的垂线。注意,画图时一般左手持三角尺,右手画线。过直线外一点画一条直线的垂线,三角尺的另一条直角边必须通过给定的这个点。
8、由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。
9、认识平角、周角。 平角 :角的两边在同一直线上,(像一条直线),平角等于180°(读作180度),等于两个直角。 周角:角的两边重合,(像一条射线),周角等于360°(读作360度),等于两个平角,四个直角。
10、角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。
11、将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。
12、认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。 量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。
13、用量角器画指定度数的角的方法。 画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。
小学二年级数学下册知识点总结第5篇
第二单元 位置
1. 竖排叫列,确定第几列一般从(左)往(右)数;
横排叫行,确定第几行一般从(前)往(后)数。
2.用数对描述位置要用(两个)数据,列在前,行在后,中间用逗号隔开,外面加一个小括号。如数对(3,4) 3表示第3列,4表示第4行。
3.向右平移,行不变,平移几个单位,列就增加几个单位。
向左平移,行不变,平移几个单位,列就减少几个单位。
向上平移,列不变,平移几个单位,行就增加几个单位。
向下平移,列不变,平移几个单位,行就减少几个单位。
一、 小数乘整数
1.小数乘整数意义:求几个相同加数的和的简便运算。
如:3.6×5表示5个3.6的和是多少(3.6+3.6+3.6+3.6+3.6),或者3.6的5倍是多少。
2.小数乘整数的计算方法:先把小数扩大成(整数),按整数乘法的法则算出(积);再看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。
二、 小数乘小数
1.小数乘小数的意义:就是求这个数的几分之几是多少。
如:2.6×0.4就是求2.4的十分之四是多少。8.5×3.4就是求8.5的3.4倍是多少。
2.小数乘法的计算方法:先按(整数)乘法算出(积),再点(小数点);点小数点时,看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。
注意:乘得积的小数位数不够时,要在前面用0补足,再点小数点;小数末尾有0的,竖式
计算点完小数点后把0划掉,横式不用写0。
三、积的近似数
1.先按(小数)乘法算出积;
2.根据需要,按(四舍五入)法保留一定的小数位数。
注意:计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
四、整数乘法运算定律推广到小数
1.整数乘法的交换律、结合律、分配律,对于小数乘法也(适用)。
2.小数四则运算顺序跟整数是一样的:即有括号的'要先算括号里的,没有括号的要先算乘除
法,后算加减法,同级运算按照从左往右的顺序计算。
第三单元 小数除法
一、除数是整数的小数除法
计算除数是整数的小数除法:小数除以整数,按照(整数除法)的方法去除,商的小数点
要和(被除数)的小数点(对齐)。如果被除数的整数部分不够除,商(0),点上(小数点),继续除;如果除到被除数的末尾仍有余数,要在(余数)后面添0再除。
二、一个数除以小数
计算除数是小数的除法:1.先移动除数的小数点,使它变成(整数);2.除数的小数点向右
移动(几位),(被除数)的小数点也向(右)移动几位(位数不够的,在被除数的末尾用0补足);3.然后按照除数是整数的小数除法进行计算。
三、商的近似数
求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
四、循环小数
1.定义:一个数的小数部分,从某一位起,一个数字或者几个数字(依次不断)重复出现,这样的小数叫做(循环小数)。依次不断重复出现的数字,叫做这个循环小数的的(循环节)。
2.循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如0.3636
1.746746
一种是简便形式:只写出一个(循环节),然后在循环节的(首位)和(末位)数字上面各记一个(圆点)。如:
3.有限小数:小数部分的位数是(有限)的小数是有限小数。
无限小数:小数部分的位数是无限的小数是(无限小数)。 循环小数都是无限小数。 规律:
1. 一个数(0除外)乘大于1的数,积比原来的数大; 如4.25×1.1 > 4.25
一个数(0除外)乘小于1的数,积比原来的数小。 如4.25×0.9 < 4.25
2. 一个数(0除外)除大于1的数,商比原来的数小; 如4.25÷1.1 < 4.25
一个数(0除外)除小于1的数,商比原来的数大。 如4.25÷0.9 > 4.25
由此可得4.25×1.1 > 4.25÷1.1
4.25×0.9 < 4.25÷0.9
3. 被除数的整数部分大于除数,商大于1; 如 87.4÷46,因为87>46,所以87.4÷46>1。 被除数的整数部分小于除数,商小于1。 如 8.5÷17,因为8<17,所以8.5÷17<1。
4. 商不变性质:被除数和除数(同时扩大)或(同时缩小)相同的倍数,商不变。 被除数(扩大)或(缩小)多少倍,除数不变,商也(扩大)或(缩小)多少倍。 被除数不变,除数(扩大)或(缩小)多少倍,商反而(缩小)或(扩大)多少倍。 5. 一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
两个因数都扩大(缩小),扩大的倍数相乘是多少倍,积也扩大(缩小)多少倍。
第四单元 可能性
1. 表示可能性:可能、不可能、一定(肯定)。
2. 数量越多,可能性越大;
数量越少,可能性越小。
小学二年级数学下册知识点总结第6篇
学好数学,要记住的东西很多,下面是七年级上册知识点总结,为大家提供参考。
第一章 有理数
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的`符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba
4.乘法结合律:(ab)c = a (b c)
5.乘法分配律:a(b +c)= a b+ ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数:一个单项式中,数字因数叫做这个单项式的系数。
4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(二)一元一次方程:
1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2.解:求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1.等式两边加(或减)同一个数(或式子),结果仍相等。
如果a= b,那么a± c= b± c
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ∕c = b ∕ c。
(三)解方程的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。
1.去分母:把系数化成整数。
2.去括号
3.移项:把等式一边的某项变号后移到另一边。
4.合并同类项
5.系数化为1
第四章 图形认识初步
一、图形认识初步
1.几何图形:把从实物中抽象出来的各种图形的统称。
2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线
1.线段:线段有两个端点。
2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3.直线:将线段的两端无限延长就形成了直线。直线没有端点。
4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5.相交:两条直线有一个公共点时,称这两条直线相交。
6.两条直线相交有一个公共点,这个公共点叫交点。
7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9.距离:连接两点间的线段的长度,叫做这两点的距离。
三、角
1.角:有公共端点的两条射线组成的图形叫做角。
2.角的度量单位:度、分、秒。
3.角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。
4.角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
④工具:量角器、三角尺、经纬仪。
5.余角和补角
①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。
②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。
③补角的性质:等角的补角相等
④余角的性质:等角的余角相等
小学二年级数学下册知识点总结第7篇
导读:人们常常对已做过的工作进行回顾、分析,并提到理论高度,肯定已取得的成绩,指出应汲取的教训,以便今后做得更好。下面是小编整理的苏教版三年级科学下册知识点总结,欢迎阅读!
第一单元植物的生长变化
1.绿色开花植物一般是用种子繁殖后代的。
2.播种前,挑选那些饱满、没有受过损伤的种子的过程叫选种。
3.种子萌发先长根,再长茎、叶,根总是向下生长的,根的生长速度很快。
4.植物的根能够吸收水分和矿物质,还能将植物固定在土壤中。
5.植物的`绿叶可以制造植物生长所需要的养料,植物生长所需的养料是由植物绿色的叶依靠太阳提供的能量,利用水和二氧化碳制成的。
6.绿色开花植物如凤仙花的身体由根、茎、叶、花、果实、种子六个部分组成。
7.植物的生长过程中需要阳光、温度、土壤和适宜的水分等条件。
8.植物的茎具有支撑植物和运输水分和养料的作用。能从下到上将根吸收的水分和矿物质运输到植物的各个部分;从上到下将植物制造的养料运输到植物的各个部分。
第二单元动物的生命周期
1.鸡、青蛙、鱼、乌龟等动物都产卵,卵是动物生命的开始。
2.蚕卵的孵化需要适宜的温度和湿度。在放蚕卵的盒子上要扎些不孔,因为蚕卵需要呼吸。
3.蚕宝宝最爱吃的食物是桑叶,蚕能吐丝结茧,蚕宝宝的生长过程中,要经过四次蜕皮,蚕和蝴蝶等昆虫的一生要经过卵、幼虫、蛹、成虫四个时期,蚕蛹被茧包裹,茧能起到保护蛹的作用。蚕蛹经过10-15天,会变成蚕蛾,蚕蛾是蚕的成虫,分雌蛾和雄蛾。雌蛾和雄蛾交配后,雌蛾产卵繁殖后代。
4.养蚕、抽取蚕丝,是我国的伟大发明之一。远在4000多年以前,我国劳动人民就开始养蚕,利用蚕丝织成华丽的丝绸和各种丝织品,并远销国外。
5.蚕的一生是不断生长变化的,要经历蚕卵、蚕、蛹、蚕蛾四个不同形态的变化阶段。
6.蚕的身体分为头、胸、腹三部分,胸部有三对足。蚕长到一定阶段会长出新皮,换下旧皮,这叫蜕皮。
7.蚕的一生会经历出生、生长发育、繁殖、死亡四个阶段,这一过程称为蚕的生命周期,一般大约为56天;自然界中的动物都有生命周期,也都要经历出生、生长发育、繁殖、死亡四个阶段;人也要经历出生、生长发育、繁殖、死亡四个阶段;人和动物一样也具有生命周期。
8.影响蚕生命和变化的因素有食物、气温、有害气体、疾病等。
第三单元磁铁
1.磁铁能吸引铁制的物体,这种性质叫磁铁。磁铁隔着一些物体也能吸铁。
2.磁铁上磁力最强的部分叫磁极,磁铁有两个磁极。一个磁铁摔断了也有两个磁极。
3.磁铁能指南北方向。指南的磁极叫南极,用“S”表示;指北的磁极叫北极,用“N”表示。
4.磁铁的同极相互排斥,异极相互吸引,两个磁极的作用是相互的。磁悬浮列车就是根据同极相互排斥的原理制造的。
5.两个或多个磁铁吸在一直,磁力大小会发生改变。
6.指南针是作用磁铁能指南北的性质制成的指示方向的仪器。钢针经过磁铁沿一个方向磨擦可以变成磁铁。
7.被称为世界上最早的指南针叫司南,是我国四大发明之一。
8.磁铁的用途和它的性质是相联系的。
9.检验没有标明南北极的磁铁可以采用悬挂法、指南针验测法、磁铁检测等。
小学二年级数学下册知识点总结第8篇
总结知识点,学习、复习起来更加方便。下面是七年级上册数学知识点总结,希望对大家有帮助。
第一章 有理数
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减 的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章 整式的加减
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的`符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章 一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二) 去括号与去分母
①一般步骤:1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程
利用方程不仅能求具体数值,而且可以进行推理判断。
第四章 图形认识初步
4.1多姿多彩的图形
4.1.1几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线 ,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法
4.2 直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角
4.3.1角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。