约数和倍数的意义数学教案一等奖
1、约数和倍数的意义数学教案一等奖
一、教法建议
【抛砖引玉】
通过本单元的教学要使学生掌握整除、约数、倍数、质数、合数、质因数、公约数、最大公约数、公倍数、最小公倍数等概念;知道有关概念之间的联系和区别,能够有条理、有根据地进行思考;能使学生掌握能被2、5、3整除的数的特征;会分解质因数;会求最大公约数(两个数)和最小公倍数。
(一)教学整除的概念
因为整除这部分知识,学生在第八册教材中已接触过,因此在教学整除的概念时要注意抓住三点。
1.复习“整除”的意义。
例如:你能说出整除的含义吗?下面哪个算式的第一个数能被第二个数整除?
23÷7=3……2 6÷5=1.2
15÷3=5 24÷2=12
2.用定义的形式对“整除”加以概括,并用字母表示。
两个数相除,如果用字母表示,可以这样说:整数a除以整数b (b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也就可以说b能整除a)。
3.突出强调除数不有是0。
(二)教学约数和倍数的概念
约数和倍数的概念是本单元最基本的概念,教学时要抓住五点。
1.通过“整除”引出“约数”和“倍数”的概念后,加以概括。
例如:15÷3=5,15能被3整除,我们就说15是3的倍数,3是15的约数。
如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。
2.要强调倍数和约数是一对密不可分的概念。它们是互相依存的关系。
3.要掌握求一个数的“约数”和“倍数”的方法,并掌握其各自的特征。
在掌握一个数的约数和倍数求法的基础上,重点说明其特征:
一个数的约数的个数是有限的,其中最小的约数是1最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
可讨论一下为什么?
4.强调一个数既可以是另一个数的约数,又可以是其它数的倍数。
如:12既是60的约数,又是6的倍数。
5.要重点处理好0的问题。
根据约数和倍数的概念,0是任何自然数的倍数,任何自然数都是0的约数。但研究分解质因数、最大公约数、最小公倍数时,是把0除外的,所以要着重指出在后面研究的内容里不包括0,这样可以减少不必要的麻烦。
(三)教学能被2、5、3整除的数的特征主要把握以下四点
1.通过观察、引导,掌握能被2、5、3整除的数的特征。
2.能根据特征进行判断。
3.通过能被2整除的特征,引出奇数和偶数的概念。
能被2整除的数叫偶数,不能被2整除的数叫做奇数。
4.深化知识,沟通知识之间的联系。
(1)在□中填上几符合要求。
5□,能被2整除又能被3整除。
1□0,能被2、3、5同时整除。
(2)能被9整除的数,能否一定被3整除?为什么?
(四)教学质数、合数、分解质因数要抓住四点
1.通过对每个数的约数的个数及特点进行分类,引出质数、合数的概念。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。
如:2、3、5、7、11都是质数。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
如:4、6、8、9、10、12都是合数。
2.重点说明“1”既不是质数,也不是合数。
3.能利用质数与合数的概念,判断一个数是质数还是合数。
如:下面哪些数是质数?哪些数是合数?
19、21、43、67、2、89
4.掌握质因数、分解质因数的概念和分解质因数的方法。
(1)每个合数教可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
如:60=2×2×3×5,2、2、3、5都是60的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(3)通常用短除法来分解质因数,这样比较简便。
把一个合数分解质因数,先用一个能整除这个合数的质数(通常从最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续除下去直到得出的商是质数为止,然后把各个除数和最后的商写成连乘的形式。
(五)教学公约数和最大公约数要抓住以下四个方面
1.公约数和最大公约数的概念
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
例如:1、2、4是8和12的公约数;4是8和12的最大公约数。
2.通过公约数的概念引出互质数的概念
公约数只有1的两个数,叫做互质数。
例如:5和7是互质数,7和9也是互质数。
3.求两个数最大公约数的方法
为了简便、通常写成下面的形式。
2 18 30 ……用公有的质因数2除
3 9 15 ……用公有的质因数3除
3 5 ……除到两个商是互质数为止
把所有的除数乘起来,得到18和30的最大公约数是2×3=6。
求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
在除的过程中,有时也可以用两个数的公约数去除。
4.求最大公约数的两种特殊情况
(1)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
(2)如果两个数是互质数,它们的最大公约数是1。
例如:7和21的最大公约数是7。
8和15的最大公约数是1。
对于能直接看出最大公约数的就不再用短除法来求了。
(六)教学公倍数和最小公倍数,要抓住以下四个方面
1.公倍数和最小公倍数的概念。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
例如:12、24、36、……都是4和6的公倍数,12是4和6的最小公倍数。
2.求最小公倍数的方法。
通常我们用分解质因数的方法来求几个数的最小公倍数。为了简便,通常写成下面的形式:
(1)求18和30的最小公倍数。
2 18 30 ……用公有的质因数2除
3 9 15 ……用公有的质因数3除
3 5 ……除到两个商是互质数为止
把所有的除数和商连乘起来,得到18和30的最小公倍数是2×3×3×5=90。
求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
(2)求8、12和30的最小公倍数。
求三个数的最小公倍数,通常这样做:
2 8 12 30 ……用三个数公有的质因数2除
2 4 6 15 ……4和6还有质因数2,再用2除以这个数,把15移下来
3 2 3 15 ……3和15还有公有的质因数,再用3除这两个数,把2移下来
2 1 5 ……2、1和5每两个数都是互质数,除到这里为止
在讲求最小公倍数的方法时,重点讲明算理。
3.求两个数最小公倍数的特殊情况。
(1)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍 数。
如:12和48的最小公倍数是48。
(2)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
如:7和8的最小公倍数是56。
以后计算时,如果能直接看出最小公倍数是多少,可以不写出计算过程。
4.通过讨论,比较求两个数的最小公倍数与求三个数的最小公倍数的相同点和不同点;比较求最大公约数与求最小公倍数的相同点和不同点。
【指点迷津】
1.“整除”和“除尽”有什么联系和区别?
在整数除法里,a÷b=c,除得的商c如果是整数,而没有余数,我们就说,a能被b整除,或者说b能整除a。如:15÷3=5,我们说15能被3整除,或者说3能整除15。
在除法里,a÷b=c,数a、数b、以及商c不见得是整数,但没有余数,我们就说a能被b除尽,或者说b能够除尽a。例如,10÷4=2.5、1.5÷3=0.5、1.5÷0.3=5,都可以说被除数a能被除数b除尽。
从上面可以看出,整除是限定在整数除法里的,而“除尽”就不一定限于整数除法。我们还可以用集合图表示其关系:如果a能被b整除,a就一定能被b除尽;反之,a能被b除尽,a却不一定能被b整除。即整除可以说是除尽,但除尽不一定是整除,整除是除尽的一种特殊情况。
2.“约数”和“倍数”有什么关系?又有什么不同?
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。如12÷3=4,我们就说12是3的倍数,3是12的约数。不能说12是倍数,3是约数。由此可见,倍数和约数是相互依存的。
为了说明它们的不同点,请看下表。
个数
最小
最大
一个数的约数
有限
是1
是本身
一个数的倍数
无限
是本身
没有
3.什么叫质因数?什么叫分解质因数?
把一个合数分解成若干质数连乘积的形式,每一个质数就是这个合数的质因数。如:12=2×2×3,2、3叫12的质因数。
分解质因数就是把一个合数写成若干质数连乘积的形式。如12=2×2×3。
4.“0”是偶数吗?最小的偶数是几?
能被2整除的数叫做偶数,因为“0”能被2整除,所以“0”是偶数。但在小学讲数的整除时,是在自然数的范围内,不包括“0”,所以我们可以不说“0”是偶数。
最小的偶数是几?先要搞清范围,在自然数范围内,最小的偶数是2,到中学里学了负数就不存在最小的偶数了。
二、学海导航
【思维基础】
1.举例说明什么叫整除?
例如:20÷5=4,20能被5整除,或5能整除20。
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。
2.什么是约数和倍数?它们之间有什么关系?
如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。
举例:20÷5=4,20能被5整除,我们就说20是5的倍数,5是20的约数。
约数和倍数是互相依存的。
3.找出60的约数,4的倍数。
60的约数有:1、2、3、4、5、6、10、12、15、20、30、60。
4的倍数有:4、8、12、16、20……
从上面可以看出:一个数约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
4.说说下面的数哪些能被2整除?哪些能被3整除?哪些能被5整除?各自的特征是什么?
21、54、65、204、280、58、83、114、75、320、87、155
能被2整除的数有:54、204、280、58、114、320。
能被3整除的数有:21、54、204、114、75、87。
能被5整除的数有:65、280、75、320、155。
由此可知:
个位上是0、2、4、6、8的数,都能被2整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
个位上是0或者5的数,都能被5整除。
5.说出什么叫质数、什么叫合数并判断下面各数哪些是质数、哪些是合数。
3、27、41、6、11、19、69、57、97
一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
质数有:3、41、11、19、97
合数有:27、6、69、57
6.把下面各数分解质因数,并说出分解质因数的方法。
12、15和20的最小公倍数是2×2×3×5=60。
求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
【学法指要】
1.三个连续自然数的乘积为什么一定是6的倍数?
思路分析:因为任意三个连续自然数里,至少有一个是2的倍数和一个是3的倍数,而2的倍数与3的倍数的乘积,就必然是6的倍数。
2.书架上有96本科技读物,如果不一次拿走,也不是一本一本地拿走,要求每次拿走的本数同样多,而且正好取光,问共有多少种拿法?
思路分析:通过读题,便可理解题目的意思,就是求96的约数的个数是多少,而题目告诉我们如果不一次拿走,也不是一本一本地拿走,实际是要我们把1和96这两个约数扣除才是要求的答案。
96的约数的个数:(5+1)×(1+1)=12(个)
扣除约数1和96,则约数的个数是:12-2=10(个)
答:共有10种拿法。
3.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?
思路分析:在1~100的自然数中,把有约数2的数、有约数3的数、有约数5的数扣除,就是要求的答案的个数。
在1~100的自然数中,
有约数2的数有:100÷2=50(个)
有约数3的数有:100÷3=33(个)……1
有约数5的数有:100÷5=20(个)
有约数2、3的数有:100÷(2×3)=16(个)……4
有约数3、5的数有:100÷(3×5)=6(个)……10
有约数2、5的数有:100÷(2×5)=10(个)
有约数2、3、5的数有:100÷(2×3×5)=3(个)……10
解:在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的自然数共有:100-=26(个)
4.用0、2、4、5、7组成一个五位数,使这个数是除以5余4的最小的五位数。
思路分析:用0、2、4、5、7组成的五位数有很多,如24570、24507、24057、20457……满足最小五位数这个条件的最高位上的数字必须是最小 的那个数字,而这五个数字其中最小的那个数字是0,0在这五位数中不能排首位,所以只能把2排在最高位打头。题目的要求是最小的五位数,千位上的数字必须是0,百位上是5,十位上是7,个位上是4。那么为什么百位上不是4呢?因为题目的要求是除以5余4。所以百位上的数字不能是4,只能把4放在个位上。
解:用0、2、4、5、7组成的一个五位数,使这个数除以5余4,还须是最小的五位数,那只能是20574。
5.一个长方体的3个侧面积分别为s1=20平方厘米,s2=15平方厘米,s3=12平方厘米。求这个长方体的体积是多少?
思路分析:根据长方体6个面的特征,我们知道:每个长方体的6个面都是相对的两个面的面积相等。但是已知的3个面的面积都不相等,我们就可以推出:已知的3个面一定相交于一个顶点。这样,我们就可以画出这个长方体的图。
然后把已知条件都标在图上,假设这个长方体的长、宽、高分别为a、b、c,s1=ab=20,s2=ac=15,s3=bc=12(如图所示)。求这个长方体的体积,必须知道这个长方体的长、宽、高各是多少。但是长、宽、高都没直接给出。不过,长、宽、高这三个数中,每两个数的乘积我们都知道,如果把每两个数的乘积再相乘,里面一定有三个数之积。我们仔细分析:ab×ac×bc,根据乘法的交换律和结合律,可以变换为(abc)×(abc)。如果我们能把3个侧面积的积,分成两个相同的数的乘积,问题就可以迎刃而解。abc就是长方形的体积。那么3个侧面积的乘积怎样分成两个相同的数相乘呢?把这几个相乘的数分解质因数。
解: 20×15×12
=2×2×5×3×5×3×2×2
=(2×2×3×5)×(2×2×3×5)
=60×60
∴abc=60
答:这个长方体的体积是60立方厘米。
【思维体操】
1.有甲、乙两数,它们的最大公约数是6,最小公倍数是72,求甲、乙二数。
解法一: 72=2×2×2×3×3
=2×2×(2×3)×3
=4×6×3
4×6=24
6×3=18
答:甲、乙二数分别是24和18。
解法二: 72÷6=12
12=2×2×3
因为,2与6(2×3=6)不是互质数,所以,只有4(2×2=4)与3才是互质数。
6×4=24
6×3=18
答:甲、乙二数分别是24和18。
评析:解法一把甲、乙二数的最小公倍数分解质因数,从这个质因数连乘式中找出它们的最大公约数,再组成一个连乘式。这个连乘式中除去有它们的最大公约数外,必须有两个互质数。用这两个互质数分别乘以它们的最大公约数,就可以求出这两个数。
解法二用甲、乙二数的最小公倍数除以它们的最大公约数,所得的商必是甲、乙二数取出最大公约数后,所剩下的两个互质数的积。因此,把所求得的商再分解因数,并搭配成两个互质数,最后用这两个互质数分别乘以它们的最大公约数,就可以求出这两个数了。这两种解法各有千秋,一般采取第一种解法的比较多。
2.从1+2+3+……+1991所得的和是奇数还是偶数?
解法一:求出它们的和是多少?
=1983036
所以它们的和是偶数。
解法二:从1到1991的数中,偶数有1990÷2=995(个),其和为偶数;有995+1=996(个)奇数,其和为偶数。因为两个偶数的和一定是偶数。所以,1+2+3+……+1990+1991的和是偶数。
评析:解法一是先确定其和是奇数还是偶数,根据求连续自然数和公式,求出它们的和,然后知道和是偶数。解法二是先确定从1到1991这1991个自然数中奇数的个数和偶数的个数,然后根据自然数中任意几个偶数的和还是偶数,单数个奇数的和仍为奇数,双数个奇数的和为偶数这一特征,来确定其和是奇数还是偶数。
这两种解法,第一种是采用计算的方法比较麻烦,我们提倡第二种方法,它是根据这一列数的特征,按奇、偶数排列,来找出答案的。
3.在1、2、4、6、12、24、36、48中,哪些数是24的约数?哪些数是3的倍数?
分析:由于题目给出了有限的几个数,所以在思考24的约数以及它的倍数时,只能从题目中的已知的这几个数中选择。这比写出某个数的全部约数或指某数的几个倍数的题目,有一定难度。
解答:本题24的约数有1、2、4、6、12、24,24的倍数有24、48两个。
4.从小到大写出10个有约数11的数。
分析:由于某数有约数11,说明某数能被11整除。某数有约数11,实质上某数是11的倍数,所以只要从小到大写出11的倍数即可。
解答:从小到大10个有约数11有数是11、22、33、44、55、66、77、88、99。
5.既有约数2,又有约数3的50以内最大数是几?
分析:解答时首先要理解题意,同时要注意得数的范围。
解答:既有约数2,又有约数3的最小数是6,50以内6的倍数有6、12、18、24、30、36、42、48。其中最大的数是48,因此48就是本题的答案。
6.三个连续自然数的乘积为什么一定是6的倍数?
分析:因为任意三个连续自然数时,至少有一个是2的倍数和3的'倍数,而2的倍数与3的倍数的乘积,必须是6的倍数。
7.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?
分析:在1~100的自然数中,把有约数2的数,有约数3的数、有约数5的数扣除,就是问题所求。所以解这道题时先分别求出1~100的自然数中有约数2、3、5数的个数。
解答:在1~100的自然数中:
有约数2的数有:100÷2=50(个)
有约数3的数有:100÷3=33(个)……1
有约数2、3的数有:100÷(2×3)=16(个)……4
有约数2、5的数有:100÷(2×5)=10(个)
有约数3、5的数有:100÷(3×5)=6(个)……10
有约数2、3、5的数有:100÷(2×3×5)=3(个)……10
在1~100的自然数中,既没有2的约数,又没有3的约数,还没有5的约数的自然数共有:
100-=26(个)
三、智能显示
【心中有数】
(一)本单元学习的主要内容
(二)请你考考自己
选择题。把正确答案的字母填入括号内。
(1)第一个数能被第二个数整除的是()。
(A) 15和2 (B) 3和8 (C) 1.5和5 (D) 24和6
(2)两个奇数的和是( )。
(A)质数 (B)合数 (C)可能是质数,也可能是合数 (D)可能是质数、1或者合数
(3)两个数的( )个数是有限的。
(A)公约数 (B)公倍数 (C)最大公约数 (D)最小公倍数
(4)在自然数中,凡是7的倍数( )。
(A)都是偶数 (B)都是奇数 (C)都是质数 (D)可能是奇数,也可能是偶数
(5)如果a÷b=5,那么( )。
(A) a一定能整除b (B) a可能整除b
(C) b一定是a的约数 (D) b可能是a的约数
(6)甲数=2×3×5×a,乙数=2×3×7×a,当a=( )时,甲、乙两数的最大公约数是30。
(A) 2 (B) 3 (C) 5 (D) 7
【动脑动手】
1.奶奶家有一个天达牌电子表,每起24分钟亮一次灯,每到整点钟响一次铃。早晨6点时,这个电子表既响铃又亮灯。那么,下一次既响铃又亮灯时是几点钟?
2. 6与哪个数的最大公约数为3,而最小公倍数为30。
3.为迎接30年大庆少先队员跳集体舞,不论每列4人、5人或6人,都能排成一个长方形队伍而无剩余,问少先队员至少有多少人?如果人数在150到200之间,那么少先队员有多少人?
参考答案:
1.思路分析:因为这个电子表6点整的时候既响铃又亮灯,又因为它每走24分钟亮一次灯,所以从6点钟起电子表走的分钟是24分钟亮一次,只要是24分钟的倍数电子表都会亮灯。也就是说,下一次既响铃又亮灯时,电子表所走的分钟数一定是24的倍数。同样道理,因为电子钟每到整点钟响一次铃,即电子表每走60分钟响一次铃。那么下一次既响铃又亮灯时,电子表所走的分钟数也一定是60的倍数。所以下一次既响铃又亮为时,电子表所起的分钟数一定是24和60的公倍数,而且是它们的最小公倍数。
解:(1)求24和60的最小公倍数。
=120
(2)计算走了几个小时。
120÷60=2(小时)
(3)计算下一次既响铃又亮灯时是几点钟。
6+2=8(点)
答:下一次既响铃又亮灯时是上午8点钟。
2.思路分析:因为两数的乘积等于这两数的最大公约数与最小公倍数的乘积。
解:设所求的数是a,则6a=3×30,a=15,所以所求的数是15。
3.思路分析:根据题意可知,少先队员人数分别能被4、5、6整除,所以人数是4、5、6的公倍数,题目要求至少有多少人,因此要求4、5、6的最小公倍数。
解:=60(人)
答:少先队员至少有60人。
60×3=180(人)
答:如果少先队员在150至200之间,那么少先队员有180人。
【创新园地】
1.兔子出生两个月后就能生一对小兔,这一对小兔两个月后又能生一对小兔。如果年初养了初生的一对小兔,一年后共有几对兔子(不考虑意外死亡)?
2.有近3米长绳子,把它分别剪成长6厘米、8厘米或9厘米的短绳,结果都剩下3厘米,求绳长。
3.有一张长为105厘米、宽为75厘米的大纸,裁成大小相同的小正方形纸,要求无多余。问至少可裁多少张?
4.体育室有96根跳绳,如果不是一次拿走,也不是一根一根地拿走,要求每次拿走的根数同样多,而且正好取光,问共有多少拿法?
参考答案:
1.年初的一至兔子,到3月份生一对;到两个月后的5月份,年初的一对兔子和3月份生的一对兔子,2对兔子生2对;到7月份,4对兔子生4对;到9月份8对兔子生8对;到11月份16对兔子生16对;到第二年的1月正好一年,就有32对兔子生32对。
解:1+1+2+4+8+16+32=64(对)
答:一年后共有64对兔子。
2.解:=72
72×4+3=291(厘米)=2米91厘米
答:绳长2米91厘米。
3.解:(105、75)=15
(105÷15)×(75÷15)=35(张)
答:至少可裁35张。
4.分析:根据题意求共有多少种拿法?与96的约数的个数有密切的关系。题中告诉我们如果不一次拿走,也不是一根一根地拿走。显然问题所求就是求96的所有约数个数去掉1和96这两个约数的个数的差。
解:96的约数有:1、2、3、4、6、8、12、16、24、32、48、96共12个。
12-1-1=10(个)
答:共有10种拿法。
【同步题库】
1.先口算,然后对符合整除意义的式子后面的括号里画“√”,对不符合整除意义的在括号里画“×”。
93÷3= ( ) 19÷2= ( )
3.5÷5= ( ) 4÷4= ( )
7.4÷3.7= ( ) 4÷0.8= ( )
2.填空
(1)在20、4.8、92、、0、0.3、111、1中,( )是自然数,( )是整数。
(2)写出小于9的所有自然数( );比5小而又不小于0的整数有( )。
(3) 29的约数有( );36的约数有( )。
(4)在30~50中6的倍数有( )。
3.判断下面各题,对的画“√”,错的画“×”。
(1)凡是能够除尽的一定能够整除。 ( )
(2)自然数和零都是整数。 ( )
(3)一个数的倍数都比它的约数大。 ( )
(4)1是所有自然数的约数。 ( )
(5)任何一个数都有约数。 ( )
4.下面的每组数中,哪一个数是另一个数的倍数,哪个数是另一个数的约数。
180和60 36和36 19和133
5.把正确的答案填在括号里。
(1)最小的一位数是( )
①0 ②0.1 ③1
(2)一棵桃树上结了桃,表示桃的个数是( )。
①整数 ②分数 ③小数 ④自然数
(3)下面三种说法正确的是( )
已知a能整除7,那么a是( )
①14 ②必定是7 ③是1或7。
(4) 73是73的( )。
①约数 ②倍数 ③约数也是倍数
6.在下面的圈内填上适当的数
16的约数 30以内的8的倍数 91的约数
7.下图左图里的数能被右图里的哪些数整除?用直线连线来。
8.既有约数5,又是2的倍数的最小三位数几?
9.100以内除以2或除以5有余数的数一共有多少个?
10.数a是60的约数,又是15的倍数,数a可能是几?
11.根据已知条件,求出a、b的值。
(1)已知:a÷b=3.5,a÷b=3……7
求:a=( );b=( )
(2)a÷b=3,a-b=16
a=( ),b=( )
12.在( )里填上最小的自然数。
【参考答案】
1.(√) 2.(×)
(×) (√)
(×) (×)
2.(1)(20、92、111、1)是自然数,(20、92、111、1、0)是整数。
(2)小于9的自然数有(8、7、6、5、4、3、2、1);比5小而又不小于0的整数有(4、3、2、1、0)
(3)29的约数有(1、29);36的约数有(1、2、3、4、6、9、12、18、36)
(4)30~50中6的倍数有(30、36、42、48)
3.判断题
(1)(×)(2)(√)(3)(×)(4)(√)(5)(×)
4.180是60的倍数,60是180的约数;36是36的倍数,36是36的约数;19是133的约数,133是19的倍数。
5.选择题
(1)最小的一位数是(1)
(2)表示桃的个数是(自然数)
(3)那么a是(1或者7)
(4)73是73的(约数也是倍数)
6.略 7.略
8.既有约数5,又是2的倍数的最小数是10,10的倍数中最小的三位数是100,所以,既有约数5,又是2的倍数的最小三位数是100。
9.这道题只要求出除以2或除以5没有余数的数有多少个,再用100减去这个数即可。
除以2没有余数的数有100÷2=50(个),除以5没有余数的数有100÷5=20(个),其中除以2除以5都没有余数有100÷(5×2)=10(个),它们每10个数中出现一次。于是100以内除以2整除以5没有余数的共有50+20-10=60(个)。那么100以内除以2或除以5有余数的数就应该有:
100-60=40(个)
10.数a可能是15、30、45、60。
11.(1)a÷b=3.5得知a是b的3.5倍,a÷b=3……7,可知a比b的3倍多7,而b的3.5倍又比它的3倍多0.5倍,0.5倍与7相对应,可以求b
b=7÷(3.5-3)=14,a=14×3.5=49
(2)a÷b=3,得知a是b的3倍,又知a-b=16,也就是a比b多16,此题是差倍问题。先求b,再求a。
b是16÷(3-1)=16÷2=8
a是8×3=24
12.
2、约数和倍数的意义数学教案一等奖
教学要求
①使学生进一步理解整除的意义。
②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。
③培养学生抽象概括与观察思考的能力。
教学重点、难点
理解除尽和整除,约数和倍数等概念间的联系和区别。
教学过程
一、创设情境
1、计算下面三组题。
(1)237= (2)65= (3)153=
113= 1.83= 242=
2、观察并回答。
(1) 上面哪个算式中的第一个数能被第二个数整除?
(2) 在什么情况下,才可以说一个数能被另一个数整除?
(3)如果用整数a表示被除数,整数b(b0)表示除数,可以怎样说?(让学生看教材第49页关于整除的'一段话)
3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
①被除数、除数都是整数,除数不等于0
明确三点 ②商必须是整数 缺一不可
③商的后面没有余数
4、除尽与整除的区别与联系。
(1)像65=1.2 1.83=0.6我们只能说第一个数能被第二个数 。
(2)除尽 被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。
整除 被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)
师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:)
二、探索研究
1.小组学习。
(1)让学生看教材第50页有关约数和倍数的一段话。
(2)小组讨论:两个数在什么情况下才有约数和倍数关系?约数和倍数是相互依存的是什么意思?
(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?
(4)倍与倍数意义一样吗?
如:15是3的倍数,表示15 能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事项。让学生看教材第50页的注意。
三、课堂实践
1.做教材第51页的做一做。
2.做练习十一的第1题。
3.做练习十一的第2题。
4.做练习十一的第3题。
5.做练习十一的第4题。
60的约数有 。
6的倍数有 。
四、课堂小结
学生小结今天学习的内容。
3、约数和倍数的意义数学教案一等奖
教材分析
约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.
教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.
学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.
教法建议
约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.
复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.
约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的'找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.
教学设计示例
约数和倍数的意义
教学目标
1、掌握整除、约数、倍数的概念.
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.
教学重点
1、建立整除、约数、倍数的概念.
2、理解约数、倍数相互依存的关系.
3、应用概念正确作出判断.
教学难点
理解约数、倍数相互依存的关系.
教学步骤
一、铺垫孕伏(课件演示:数的整除 下载)
1、口算
6÷5 15÷3 23÷7
1.2÷0.3 24÷2 31÷3
2、观察算式和结果并将算式分类.
除尽
除不尽
6÷5=1.2 15÷3=15
1.2÷0.3=4 24÷2=12
23÷7=3……2
31÷3=10……1
3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.
4、寻找具有整除关系的算式.
板书:15÷3=515能被3整除
5、分类除尽
除不尽
不能整除
整除
6÷5=1.2
1.2÷0.3=4
15÷3=15
24÷2=12
23÷7=3......2
31÷3=10......1
二、探究新知
(一)进一步理解”整除“的意义.
1、整除所需的条件.
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)
6不能被5整除;(商是小数)
1.2不能被0.3整除;(被除数和除数都是小数)
(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:
a、被除数和除数(0除外)都是整数;
b、商是整数;
c、商后没有余数.
板书:整数整数整数(没有余数)
15÷3=5
2、用字母表示相除的两个数,理解整除的意义.
(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?
(板书:a÷b)
学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.
(板书:a能被b整除)
(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)
学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).
3、反馈练习.
(1)下面的数,哪一组的第一个数能被第二个数整除?
29和336和121.2和0.4
(2)判断下面的说法是否正确,并说明理由.
a.36能被12整除.()
b.19能被3整除.()
c.3.2能被0.4整除.()
d.0能被5整除.()
e.29能整除29.()
4、”整除“与”除尽“的联系和区别.
讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?
4、约数和倍数的意义数学教案一等奖
教学目标:
1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。
2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。
教学过程:
一、准备题
1、什么是整除?
2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?
二、教学例118和24的约数各有哪几个?
1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?
找18的约数,就是看18能被哪些自然数整除:18除以()=()
2、找约数的方法;
A、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。
1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18
B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。
18/1=18(1和18都是18的约数)
18/2=9(2和9都是18的约数)
18/3=6(3和6都是18的约数)
18/4不能整除
18/6=3除数已比商大。
18的约数按顺序排列是:1、2、3、6、9、18。
3、用同样的方法找24的约数。
24/1=24(1和24都是24的约数)
24/2=12(1和24都是24的约数)
24/3=8(1和24都是24的约数)
24/4=6(1和24都是24的约数)
24/5不能整除
24/6=4除数已比商大。
4、观察约数的特征:
18、24的约数也可以分别用图表示
思考:根据上面的图回答
1、约数中最小的一个是什么数?(1)
2、约数中最大的一个是什么数?(本身)
3、一个数的约数的个数是有限的。
1、2、3、6、9、18
1、2、3、4、6、8、12、24
18的约数24的约数
5、练一练
找15和36的约数各有哪几个?
三、教学例23和5的倍数各有哪些?
1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以
3的倍数有3、6、9、12、15、18、21、24、27……
5的倍数有5、10、15、20……….
3、6、9、12、15、18……
2、3、5的倍数也可以分别用图表示:
5、10、15、20、25、30……
3的倍数5的倍数
观察上图发现:(1)一个数最小的倍数是什么数?(本身)
(2)一个数有没有最大的倍数?(没有)
(3)一个数的倍数的个数是无限的。
2、练一练
(1)50以内4、9的倍数各有哪几个?
四、巩固练习
1、在下面的圈里填上适当的数
2、在4、8、16、32、40、48、64、80这几个数中,
80的.约数有(4、8、16、40、80),
8的倍数有(8、16、32、40、48、64、80)
3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?
32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。
五、总结布置作业
反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:
1、约数中最大的和最小的约数是什么。
2、倍数中最大的和最小的倍数是什么
3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。
4、如何找出所有的约数,而且确认已全部找出的方法应加强。
5、约数和倍数的意义数学教案一等奖
教学内容
苏教版九年义务教育小学数学第十册第39-40页,练一练,练习七第1-4题。
教学目标
1、使学生认识整除的意义,认识约数和倍数,能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。
2、培养学生观察、比较、综合、概括等思维能力,培养学生依据概念进行判断的能力。
教学重难点
1、能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。
2、区别除尽和整除,倍和倍数概念间的异同,倍数和约数相互依存关系。
教具准备
口算卡、小黑板
教学过程
一、随机口算
15÷3=10÷3=1.5÷3=28÷7=20÷7=
28÷0.7=33÷11=35÷11=3.3÷1.1=
二、建构概念
1、认识整除
(1)、根据商的特点,你能将这9道算式分分类吗?
除尽(没有余数)除不尽(有余数)
(2)、除尽的这类算式还能再分一分吗?
除尽
整除不能整除
师指出:像被除数、除数和商都是整数且没有余数时,就是一个整除算式。
(3)、你能再举出一些整除的算式吗?师相机板书
(4)、设疑:太多了,说不完!谁有办法把大家的整除算式概括成一个整除算式?
(5)、启发:请字母来帮忙啊,被除数用a,除数用b,商用c,怎么表示?
师板书:a÷b=c
追问:这个整除算式中,a,b,c各有什么特点?(都要是整数,没有余数,b≠0)
(6)、指出:当a、b、c都是整数且没有余数时,就是一个整除的算式。由此便可以说:
a能被b整除,b能整除a
(7)、学会叙述:例如15÷3中,哪个数能被哪个数整除?还可以怎么说?
选一道算式,像这样说给同桌听。
(8)、判断练习P40练一练
2、认识约数和倍数
(1)、师指出:当数a能被数b整除时,a就叫做b的倍数,b就叫做a的约数。(板书课题)
(2)、例如“因为15能被3整除,3能整除15,所以,15是3的倍数,3是15的约数”这句话你会说吗?
请同学们选一个整除算式,也可以自己写两个数,同桌互相说一说。
(3)、判断
①因为1.5÷0.5=3,所以1.5是0.5的倍数。()
②因为9÷6=1.5,所以9是6的1.5倍。()
③因为36÷6=6,所以36是倍数,6是约数。()
④5是5的约数,5又是5的'倍数。()
(4)、填空,使它成为整除算式。
()÷1=()0÷()=()
师:能填的完吗?填不完是因为怎样的数都可以?
任何整数任何非零整数
师:因此,我们可以说,任何整数都是1的倍数,1是任何整数的约数。0是任何非零整数的倍数,任何非零整数也都是0的约数。为了方便,我们在研究约数和倍数时,所说的数一般指不是零的自然数。
三、巩固练习
P431-4机动
四、小结应用
1、学了这节课,你有什么收获?
2、应用这些知识,你能从下面这组数中,任选2个数字说句话吗?
4530532
6、《约数和倍数》的数学教学反思
最近我上了“约数和倍数”一课。开头一部分最初我是这样设计的:
师:我们学了四年多数学了,我们都感受到数学其实就是有关“数”的“学问”。而数在我们生活中无处不在,你能举些例子吗?生:(举例)
师:老师这里也有一些含有数的信息(出示一组数据),你能选其中两个组成应用题吗?生:(口答组成的应用题及算式)教师板书。
师:请同学们观察以上这些算式,并根据算式的特点分类,分好后小组交流。(学生自己分好类后小组交流)
师:哪位同学来说说你是怎么分类的?
随后在思考这节课时,我发现按这样的方案上的话虽然能在一定程度上调动学生的.参与积极性,使学生更多地参与进来,但耗时太多,情节太多太杂,这样既不能突出课的重点,也减少了这节课学生接受新知和练习的时间,显然得不偿失。于是我“忍痛割爱”把这一环节进行了简化:
首先出示9个算式,让学生进行口算,这样一方面进行基本训练,提高口算能力,另一方面让学生感受除法计算中的不同情况,为分组、认识整除埋下伏笔。
上完这节课后,丁主任对这节课进行了指导,我进而认识到,经过调整后虽然摒齐了对课的形式的过分追求,但对课的设计思考是不到位的。对教学的目标教师和学生还都不够清楚,重点还不够突出。于是我又进行了调整:
课一开始,教师首先揭示课题,并提问学生由这个课题想到了什么。这样就让学生在一开始就有一个明确的目标。然后教师直接点出:要认识约数和倍数,我们首先要认识一个非常重要的概念——整除。随后就出示已计算好的一组算式,看一下计算是否正确,再按照算式中被除数、除数和商的特点来进行分类。
第二次上这节课时,我就感觉到,教师和学生都有了明确的目标,也因为有了明确的目标,教师的教学思路清晰了,学生的学也有了明确的方向,从而也使得这节课的重点很好地体现了出来,效果明显比第一次上时好多了。
随着新课改的不断深入,我们从最初的狂热中逐渐冷静下来,也开始更多地思考如何重实效轻形式的问题。通过两改两上这节课,我进一步感受到,我们的数学课堂不是一定需要吸引人的问题情境来调动学生的学习积极性。清晰的思路、严密的逻辑、成功的体验,用数学本身的魅力来吸引学生,也许更有利于学生的长远发展。
7、《约数和倍数的意义》教学反思
【背景与导读】
《约数和倍数》是人教版义务教材五年级下册的教学内容。本节课属于概念教学,可操作性不强,对学生来说比较抽象,理解较困难。可以说,目前,想把概念教学讲透、讲活是众多数学教师所面临的一个难题。理解约数和倍数的涵义是建立在“整除”的基础之上。在之前学生对整除只是有个初步的认识,但还不能以严密的定义形式再现,所以我先让学生通过给几道除法算式求商,然后根据算式特点将算式分类,通过观察、比较建立“整除”的意义。在此基础上提出两个数的另一种关系:约数和倍数的关系。通过自主学习、合作探究的形式,掌握约数和倍数的意义,并抓住了对关健词“相互依存”的理解,又通过学生互辨互评的过程,以及趣味的变式练习,深化了对约数和倍数的理解。在整个新知识的教学中,学生始终保持着饱满的热情,积极地去探索、去体验,主动地建构知识。
【案例与反思】
活动探究,建立整除概念。
[片断一]
1.将下面几道算式卡片分发到各小组
15÷36÷1.23÷224÷8
30÷153.3÷1.120÷6
师:先计算,再根据你们在计算时的体验将这些算式分类,并说出分类的依据。
(小组计算、商讨,汇报交流)
生1:我们组认为可以分为两类,一类是除不尽的,另一类是除尽的。(同时展示)
(1)15÷3=5(2)7÷3=2……1
6÷1.2=520÷6=3……2
3÷2=1.5
24÷8=3
30÷15=2
3.3÷1.1=3
生2:我们组认为可以分为这样的两类:一类是被除数和除数都是整数的,另一类是被除数和除数有小数的。(同时展示)
(1)15÷3=5(2)6÷1.2=5
3÷2=1.53.3÷1.1=3
30÷15=2
7÷3=2……1
20÷6=3……2
生3:我觉得生1组的分类合理些,生2组的分类没什么意义。
生4:我们也同意生1组的分法,但我们认为还可以将第(1)类再分成两类,这样可以分成三类:一类是一般除尽的;一类是不仅能除尽并且整除的;一类是除不尽的。(同时展示)
(1)3÷2=1.5(2)15÷3=5(3)7÷3=2……1
6÷1.2=524÷8=320÷6=3……2
3.3÷1.1=330÷15=2
师:依据不同的标准,就有不同的分法。生3将能除尽的算式又分成了两类,将整除算
式单独列出来。你能用一句话或一幅图表示整除和除尽的关系吗?
(小组内商量)抽生汇报:能整除一定能除尽,能除尽不一定能整除,除尽的范围要比整除的范围大一些。
生:我们还可以用一个集合图来表示整除和除尽的关系:
师:请你们再举出几道整除算式来。同桌交流。
师:如果用数a表示被除数,数b表示除数,数c表示商,那么它们的整除条件是怎样的?(小组内商量、汇报,师板书)
a÷b=c(1)a、b、c都是整数,并且没有余数。
(2)b不等于0。
师:一道除法算式如果具备了整除条件,我们就说数a能被数b整除,B能整除a。
生自读教材整除定义。
师:那么15÷3=5这个整除算式,谁能被谁整除,谁能整除谁?(抽几名学生说一说)
小组内学生互说互评。
师:能否说3能被2整除?为什么?
……
[反思]
理解“整除”是认识“约数和倍数”的前提,概念的学习,对学生来说比较抽象。教师必须激发学生的学习兴趣,只有在学生主动的状态下的学习才是最有效的,课堂上一方面要体现以学生为主体,另一方面要培养学生自我探究的意识,让学生主动参与学习过程,才能激发他们的探究欲望,培养学生自主学习的能力。学生在以前虽然学习过整除,但已冷却了很长时间,何况当时也没有明确地下定义,而理解“整除”对于本节课很关键。于是我没有按教材安排的那样一开始就让学生回忆什么叫“整除”,而是依据学生对整除算式的表象印象将几道除法算式求商后进行分类,进而从中筛选出整除算式,通过筛选对“整除”的表象深化,从而理解“整除的意义”。另外,我也不是将计算好的算式直接让学生分类,而是先计算,再让学生根据自己的实践体验,分类时也更有依据性。还把算式制成活动卡片的形式,创设了操作契机,学生分类也较灵便,学得也很积极主动。
[片断二]
交流探索,理解“约数和倍数”
师:当数a能被数b整除时,它们也具备了另一种关系,那就是我们今天要学习的约数和倍数的关系。(板书课题)
这种关系是什么样的呢?自读教材“约数和倍数”的意义。
自学提示:
(1)在什么情况下两个数才具有约数和倍数的关系?
(2)这种关系是怎样的?
(3)“相互依存”是什么意思?(可查字典)
生1:必须在整除的前提重要条件下,两个数才具备约数和倍数的关系。(其他同学举手同意)
生2:当数a能被数b整除时,a就是b的倍数,b就是a的约数或因数。如15÷3=5,15是3的倍数,3是15的约数。
生3:生2的回答很好,他还举了例子,让大家听得非常明白。
师:(以7÷3=2……1为例)能说7是3的倍数,3是7的约数吗?
生哗然:不能!
为什么?
生4:约数和倍数必须建立在整除的前提条件下,7不能被3整除,所以不能说7是3的倍数,3是7的约数。
师作明白状,然后擦掉不是整除的算式。
同桌相互说出一组数的约数和倍数的关系。
师:书中有这样一句话,约数和倍数是相互依存的,怎样理解?
生5:我们查过字典,也相互讲座过,“相互依存”是相互依靠、相互依赖的意思,简单地说,就是“相依为命,谁也离不开谁”。
师:我也以15÷3=5为例,因为15能被3整除,所以15是倍数,3是约数。请你们判断我说的对吗?
生:“对”“不对”
师:为什么不对?
生15是3的倍数,但在30÷15=2中,15又是30的约数,所以不能单说15是倍数,它也可能成为另一个数的约数。必须说清谁是谁的倍数,谁是谁的约数。
师强调:这就是约数和倍数的相互依存交通系统,必须说清谁是谁的倍数,谁是谁的约数。
……
[反思]
在引入约数和倍数时,注意了新旧知识的联系,让学生感受到新知识的生长点。认识约数和倍数的意义时,让学生在看书自学的基础上谈收获和体会,体现了让学生在学习中的自主建构,而自学提示又给学生点亮了指明灯,让学生学有目标。对于第一次认识的两个数的约数和倍数关系,通过让学生相互说、评的过程,加强了学生对“约数和倍数”的认识,又通过查字典、互辨互说中理解“相互依存”的含义,从而深化对“约数和倍数”的理解。而在数学课堂上查字典,学生感觉很新鲜,也体会到学科之间是相互联系的,学生学得更主动了。
[片断三]
趣味练习,深化主题。
课堂练习
……
课后练习第四题:下面哪些数是60的约数,哪些数是6的倍数
481256018
我是这样设计的:将这几个数制成数字卡片,抽两名学生上黑板选出之后贴入下面的集合里
生1选出12、5贴到第一个集合里。
生2也选出48、18,然后又将12从第一个集合里拿到第二个集合里。(生1还没看见)
生1刚拿到60,生2也去拿60,这样两人相持不下,“我的”“我的”
生1:哎,12本来是我的,你怎么拿走了?(生1这才发现12已被生2拿走,而现在又在争夺这个60)
其他同学都笑了。
师:同学们,你们看,这两个数该给谁呢?
生:他们俩都对!(学生们都愣住了,噢,这两个数他们都需要。)
师:谁能说说这说明了一个什么道理?
生1:说明了一个数可能是某个数的约数,也可能是另一个数的倍数。
生2:这正说明了约数和倍数得相互依存的。
生3:正因为这样,所以不能单说谁是约数,谁是倍数。一定要说清谁是谁的约数,谁是谁的倍数;谁的约数是谁,谁的倍数是谁。
……
[反思]
巧妙地将这个练习题设计成了趣味游戏,将静态教材动态化,符合学生的年龄特点。在两个学生争夺这两个数时将课堂气氛推向了高潮。不仅增强了数学学习的趣味性,而且使学生加深了对约数和倍数的认识,并对深化本节课的主题也起到了推波助澜的作用。让学生真正成为学习的主人,调动了学生学习数学的兴趣。
[点评与拓展]
这节课是概念教学,教师没有落入“枯燥乏味”的老套,而是根据学生的年龄特点和教材特点,灵活地驾驭教材,取得了非常好的教学效果。本节课在教学设计上体现了新的课程理念,注重了学生的主动参与、自主建构,让学生在活动中理解约数和倍数的意义。教师在角色上只是作好引导,帮助学生质疑解难,当学生的学习有困难时,教师采用了分组讨论,采取合作交流的学习方式排除疑难,让学生真正成为学习的主人,亲自品尝到了成功的喜悦。
一是将静态教材动态化。新课程强调教师不仅是教材的使用者,同时也是教材的开发者,本节教学中,教师在理解、研究教材的基础上,在胆地对教材进行二度开发,实现了教材由静态向动态的转变。教师没有如教材所提供的教学思路,先复习什么是整除,然后找出整除算式,而是先将静态的算式制成动态的卡片,为学生将算式进行分类提供了动态情境,成功地实现了“整除”在学生心中的辨别与概括的建构过程,也为下面学习约数和倍数做好了准备。在课堂练习时,教师又将静态的选择题设计成活动卡片的形式,不仅调动了学生的学习数学的兴趣,而且深化了对约数和倍数的理解,实现了在数学课中的“活中乐、活中学、活中悟、活中索”的数学学习新体验。
二是教学内容探究化。“教学不是告诉,”教师没有直接把整除的意义告知学生,而是让学生在算一算、比一比、摆一摆、议一议、说一说的过程中,探究除法算式的特点,感知整除与除尽、小数除法的不同;在学习约数和倍数的意义时,则通过自主学习与合作探究的形式,当有了疑难,则通过让学生互辨互评的方式,顺利地突破了重难点,体现了“学生是教学的主体”这一新课程的核心理念。
三是概念教学活动化。以往教师在概念教学中大多采用讲解法,教学沉闷,教师讲得吃力,学生听得费劲。而在本节课中,教师让学生在拼摆算式、合作交流、变式练习等形式使课堂气氛活跃生动,学生学得轻松愉快,提高了学生学习数学的兴趣。同时也培养了学生在活动中合作学习、团结互助的精神,拓展了学生的学习能力,学生也从中尝到了成功的乐趣。
8、《约数和倍数的意义》教学反思
素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,我在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实践能力的发展有了切实的落脚点。
综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求知、参与、成功、交流和自尊的需要。
9、《约数和倍数的意义》教学反思
参与是个体投身认识与实践活动的过程和基本形式。学生主体参与教学是其在教学中主体地位最基本的表现形式,因而具有非常重要的价值。新课程的核心理念是以学生发展为本,让学生参与教学是课程实施的核心。参与的根本目的是解决学生会学习的问题,也就是会自主学习。因此,积极参与和有效参与二者就缺一不可。“约数和倍数”就是在这种理念指导下的有效尝试。
(一)、积极参与是学生自主学习的前提。
从情感上愿意学习就是积极学习,积极学习的情绪状态下学习效果最佳。因此积极参与是学生自主学习的前提。本节课从以下三个方面可以看出学生的参与是积极的:
1、情绪饱满,积极学习。本节课自始自终贯彻以学生为主体的教育理念,从开头的列举生活中的数学信息、看信息列算式、到算式分类,学生充分发表自己的观点;再到后面的练习,“练说倍数和约数”、“判断”、“咏雪”、到“动脑筋离课堂”就更热闹了,学生每人都想自己说。学生在课堂上表现出的状态是:抢着说、纷纷地说、热烈地交流,这些充分说明了学生具有浓厚的学习兴趣与高昂的学习热情。
2、频繁交往。扩大参与。素质教育强调面向全体,要求学生积极参与、全员参与,这就要求教者要为学生提供更广阔的交往空间,这种交往应该是多向式、交互式的,既有师生的交往,又有生生的交往。在本节课中,多次采用合作学习,学生都是人人参与,个个动脑、动口又动手。这些生生之间的交往,既为学生交往提供了广阔的空间,又能满足学生的求知欲,发挥学生的主观能动性,还能提高学生的智力活动水平。
(二)、有效参与是自主学习的保证。
新课程的培养目标是培养会学习的人。只有学会怎样去学,也就是会自主学习才能适应终身教育,而有效参与恰恰是思维的参与,思维的真正参与就能开发智力,培养创新能力。因此,有效参与是学生自主学习的保证。在本节课中有效参与表现为:
1、思维活跃。这是学生真正参与教学的关键所在。在本节课中,学生对除法算式的分类必须独立思考,约数和倍数的概念必须自己看书自学,“动脑筋离课堂”也不是随便乱猜就可以离开课堂,要考虑哪些数是符合要求的才能猜出,知识的构建图要理顺新旧知识的关系才能完成。一句话,没有思考就不会有真正的收获。
2、独立学习时间多。独立学习的时间就是学生自由支配的时间。自由支配的时间是学生主体参与的必要条件,也是个性发展的必要条件。本节课的课堂教学中,教师努力把自由支配的时间还给学生,让每一个学生有更多的独立思考时间。
3、表现机会充分。表现是社会人发展的途径。小学生在校学习的过程实际上是个体社会化的过程,而表现则是一个人实现社会化的台阶。在本节课的课堂上,从对除法算式进行各种各样的分类引入整除开始,教师是处处放手,真正做到学生会说的教师不讲,学生有能力探究的教师不教,学生能够升华的教师不去总结,课堂变成了学生舒展灵性的空间。尤其在对待学生学习结果的处理上,“总结”这一大环节教师没有去做,而是给学生一种极好的自我反思的机会。
综观整堂课,尽管内容枯燥抽象,而且内容较少,我力求:教师灌输得不多,而师生的启发对话多,学生之间合作交流多,学生自主学习多,教师只是一个组织者、引导着和参与者,努力让学生真正成为学习的主人,不仅积极参与每一个教学环节,切身去感受学习数学的快乐,品尝了成功的喜悦,而且尽量使不同的学生得到不同的发展,满足学生求知、参与、成功、交流和自尊的需要。
10、《约数和倍数的意义》教学反思
教学内容:
小学数学第十册第三单元中的第一小节授课内容。
目标分析:
进一步探索理解整除的意义,知道约数、倍数的含义以及它们之间相互依存的关系。
难点分析:
这部分内容是在第八册整除知识的基础上进行教学的,是这一单元中最基本的概念,也是下一步学习质数、合数、互质数,以及求最小公倍数、最大公约数的前提。因此,约数、倍数的含义以及它们之间相互依存的关系是本小节的难点。要让学生明确以下情况:1、被除数、除数(0除外)、商必须都是整数,而商后没有余数,同时明确“除尽”和“整除”的区别,还要说明如A能被B整除,反过来可以说B能整除A的道理;2、约数和倍数必须以整除为前提,约数和倍数是一对相互依存的概念,不能独立存在,同时,因为0是任何非0自然数的倍数,任何非0自然数都是0的约数,在以后学习分解质因数等内容时,一般限于非0自然数,所以本节内容应把0排除在外;3、要把倍数与倍区分清楚;4、通过一些简单的方法找出一个数的约数和倍数。
解决策略:
由于知识内容比较抽象,为了使学生掌握好这部分知识,应尽量从学生已有的知识出发,用实际例子引出概念。
在复习整除概念的意义和教学例1时,一可以通过一些除法算式的对比形式,用定义对整除加以概括,并用字母表示相除的两个数,突出除数不为0,这样就使学生对整除的意义的理解在已有的基础上得到加深。二可以通过约数和倍数必须以整除为前提的认识过程,很快说出两个倍数关系谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数,避免学生常出现的谁是倍数,谁是约数的错误认识,并强调倍数与约数是一对相互依存的关系。
在教学例2时,利用画彩条和集合图的方法表示一个数的约数。为了解决学生内容遗漏,可以用一对一的找法,如12÷12=1,就可以找到12÷1=12。通过以上找法,让学生归纳出:一个数的约数个数是有限的,其中最大的约数是本身,最小的约数是1。
在例3时,同样可以参照例2画彩条和集合图的方法表示一个数的倍数。但必须强调找一个数的倍数,应从最小的倍数开始找,引导学生探索自然数是无限的`,因此2的倍数也是无限的,所以可以用省略号表示,在用集合图表示倍数时,要注意在圈里写上省略号。在概括出一个数的倍数的个数是无限的,其中最小的倍数是它的本身时,要让学生弄清为什么一个数的倍数没有最大的,因为自然数的个数是无限的,所以一个数的倍数的个数也是无限的,因此没有最大的倍数。
课堂活动:
这节课注重学生的主动参与,自主建构,让学生在生活中理解约数、倍数的概念。具体表现如:
—是注重知识的内在联系,让学生利用已有知识经验推动新知识的学习。整除是建立约数、倍数概念的重要基础,针对知识的这一内在联系和学生已经学习了整除概念这一实际。新课前进行的复习准备,既能唤起学生对整除的回忆,激活学生的认知结构,又能为新课的学习作好充分的认知准备此外,在新课的学习和练习中,让学生感受到很多数的约数和倍数都不止一个,为公约数、公倍数等学习作铺垫。
二是充分激发学生主动参与,让学生进行自主建构.本节课在对约数、倍数的理解和关系把握的教学中,教师注重角色的转换,置学生于教学的主体地位,通过不同表述方式表达两个数的关系等,为学生进行自主探索搭建平台,学生在教师的引导、组织下,独立思考,合作交流,全面、深入理解约数、倍数的含义,清楚把握它们的关系。
三是课堂活动性强,练习形式丰富,内容全面。本节课在课堂活动的安排上,体现全面性、趣味性、深刻性。通过这样的练习,不但有利于学生全面巩固所学知识,更有利于激发学生参与的积极性,让学生体验到数学学习的乐趣。