《一元一次不等式组》教案一等奖设计
1、《一元一次不等式组》教案一等奖设计
学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的`解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组的解法
学习难点:
一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。
【预习】
1、 认真阅读教材34-35页内容
2、____________ _ 叫做一元一次不等式组。
______ _______叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来
①
二、探究活动
【例题分析】
例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3. 解不等式组
【小结】
不等式组解集口诀
同大取大,同小取小,大小小大中间找,大大小小解不了
一元一次不等式组解集四种类型如下表:
不等式组(a
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为( )
A.-1
3、不等式组 的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x-1 的解集是_ __;
(2)不等式组x-2 的解集 ;
(3)不等式组x1 的解集是__ __;
(4)不等式组x-4 解集是___ ___。
2、解下列不等式组,并在数轴上表示出来
(1)
四、应用与拓展
若不等式组 无解,则m的取值范围是 ____ _____.
2、《一元一次不等式组》教案一等奖设计
【知识与技能】
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
【过程与方法】
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的`一元一次不等式组,总结出求不等式组解集的法则。
【情感态度】
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
【教学重点】
一元一次不等式组的解法。
【教学难点】
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②
合起来,组成一个__________。
由①解得_____________,
由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。
【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
【归纳结论】
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
3、《一元一次不等式组》教案一等奖设计
教学目标:
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:
是掌握解一元一次不等式的步骤.
教学难点:
是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。
教学过程:
一、问题导入
复习:1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3<5x+3
(2)5x+3<02="">x–1
(4)x(2x+1) (5)X+2≥x 2、解下列不等式,并把它们的解集在数轴上表示出来 (1)3x–8<5x+12 (2)2(x–1)≥x+3 (3)x/5≥1+(x–3)/2 3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大? 小结: (1)不等式两边同时除以负数时,不等号的方向要改变。 (2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号 (3)去分母时不要漏乘无分母的项。 【教学目标】: 1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型, 会用一元一次不等式解决简单的实际问题。 2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题 的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型 3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习 惯;学会在解决问题时,与其他同学交流,培养互相合作精神。 【重点难点】: 重点:一元一次不等式在实际问题中的应用。难点:在实际问题中建立一元一次不等式的数量关系。 关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的 不等量关系,列代数式得到不等式,转化为纯数学问题求解。 【教学过程】:创设情境,研究新知 这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。 问题1:中国旅行社的原价是每人100元,可以给我们打7。7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱? (从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作 选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动 问题2: 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的`商品按原价的95%收费。我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后。启发提问:我们是否应分情况考虑?可以怎样分情况呢? (1)如果累计购物不超过50元,则在两店购物花费有区别吗? (2)如果累计购物超过50元,则在哪家商店购物花费小?为什么? 关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。 小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题从关键语句中找条件 符号表达 1、根据设置恰当的未知数 2、用代数式表示各过程量 3、寻找问题中的不等关系列出不等式 解不等式注意不等式基本性质的运用 (本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。)预留悬念要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。 (抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫) 教学设计: 一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。 本节课的教学设计从以下几个方面进行设置: 1。、教学内容: 本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。 2、组织形式: 本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。 3、学习方式: 动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。 4、评价方式: 教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。 作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么问题来了,教学设计应该怎么写?以下是小编整理的《实际问题与一元一次不等式》教学设计,欢迎阅读与收藏。 教学目标 1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题。 2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系。 3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的.习惯。 教学重点: 寻找实际问题中的不等关系,建立数学模型。 教学难点: 弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。 教学过程(师生活动) 提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你该怎么考虑,如何选择? 探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。 2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案: (1)什么情况下,到甲商场购买更优惠? (2)什么情况下,到乙商场购买更优惠? (3)什么情况下,两个商场收费相同? 3、我们先来考虑方案: 设购买x台电脑,如果到甲商场购买更优惠。 问题1:如何列不等式? 问题2:如何解这个不等式? 在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x。 去括号,得:6000+4500x-45004<4800x 移项且合并,得:-300x<1500 不等式两边同除以-300,得<5 答:购买5台以上电脑时,甲商场更优惠。 教师最后作适当点评。 解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠? 问题1:这个问题比较复杂。你该从何入手考虑它呢? 问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑? 分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。 最后教师总结分析: 1、如果累计购物不超过50元,则在两家商场购物花费是一样的; 2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。 3、如果累计购物超过100元,又有三种情况: (1)什么情况下,在甲商场购物花费小? (2)什么情况下,在乙商场购物花费小? (3)什么情况下,在两家商场购物花费相同? 上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。 总结归纳: 通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。 布置作业: 教科书第126页习题9.2第1题(1)(2)第3题1、2。 例1:请画出函数y=-3x+12的图像,你能利用图像解决下列问题吗? (1)方程-3x+12=0的解(2)不等式-3x+12>0的解集. (3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内? 问题一提出,就有学生不假思索,答案脱口而出,前两问也太简单了吧?我提醒学生注意题目要求,这时有学生开始画函数图像。让学生自己动手,画出一次函数y=-3x+12的图像,目的是让学生从画图的`过程中感受从左至右,直线是呈“下降”趋势的。即y随x的增大而减小。对于前两问,学生还比较好理解,但到第3问,有些学生就找不到答案了。这时就要引导学生从第2问,开始延伸,当解-3x+12>0,即函数值为正数时,对应的函数的图像在x轴的上方,y>0时,坐标系中表示的是一个平面区域,在这个区域中找出对应的自变量x的取值范围即为不等式的解。让学生对第3问,再次进行探究,由图像找出函数值在-6--6之间的部分,对应地可以找出自变量x的取值范围。要求学生能在函数图像上找到这个区域,老师再用多媒体进行动态演示。进一步激发学生思考,你能用其他方法解决这个问题吗?学生能联想到第3问也可以利用解不等式组的方法求出x的取值范围。通过本题的解决,让学生初步感受不等式与方程、函数的内在联系 教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享《一元一次不等式》教学反思,希望大家在学习中得到提高。 不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。 现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。 不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。 解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的'是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。 本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。 本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。 1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。 2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。 3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的.要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。 4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。4、《一元一次不等式组》教案一等奖设计
5、《一元一次不等式组》教案一等奖设计
6、七年级数学下册《一次函数与一元一次不等式》教学反思
7、《一元一次不等式》教学反思
8、《一元一次不等式》教学反思