教案

小学数学《组合图形面积》优秀教案一等奖

2023-07-14 13:55:10

  小学数学《组合图形面积》优秀教案一等奖

小学数学《组合图形面积》优秀教案一等奖

1、小学数学《组合图形面积》优秀教案一等奖

  教学目标

  1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。

  2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。

  教学重点

  能根据条件求组合图形的'面积。

  教学难点

  理解分解图形时简单图形的差较难分解。

  教具、学具

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、试一试

  教师引导学生读题,理解题意。

  二、练一练第1题

  1、请学生任意分割,后说说分割的是什么已经学过的图形

  2、老师要求再分割

  3、想一想出了分割还有没有其他方法。

  这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。

  学生自己进行分割,

  再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。

  适当地添上相关的条件进行分割,要求分割的合理,能够计算。

  培养学生的空间分析能力。

  通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练一练第3题

  学生看书上的图。教师读题,

  要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?

  四、作业

  完成练一练的第2题。

  理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。

  除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。

  独立完成练习。

  学生能正确进行组合图形的实际运用。

  再进行组合图形的面积。

  书设计: 图形的面积

2、小学数学《组合图形面积》优秀教案一等奖

  教学目标:

  1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

  教学方法:

  讲解法、演示法。

  教学过程:

  一、割补法

  这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

  Ppt演示变化过程,并出示解题过程。

  二、等积变形法

  这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

  Ppt演示变化过程,并出示解题过程。

  三、旋转法

  这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

  Ppt演示变化过程,并出示解题过程。

  四、小结方法

  求组合图形面积可按以下步骤进行

  1、弄清组合图形所求的是哪些部分的面积。

  2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

3、小学数学《组合图形面积》优秀教案一等奖

  教材内容:

  九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90———91页的例题和练习题。

  教学目标:

  使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。

  使学生掌握组合图形常用的割补方法。

  教学重点:

  利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学过程:

  以“寻标追源”为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。前置回顾,展示目标;在发散思维中探究新知,精讲点拨,完成目标;概括总结,反馈矫正。

  一、引标:创设情境,引导探索

  旧知辅垫,诱发注意

  电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。

  (这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)

  设景感知,激活思考

  电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:“你能计算这幢房的侧面墙的面积吗?”从而揭示课题《组合图形面积的计算》。

  (这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切“试一试”的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)

  二、寻标:提出问题,寻找目标

  叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90———91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。

  (在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)

  三、探标:追源问底,引导发现

  提出问题:“为了求组合图形的面积,书上是如何讲的?”、“除了书上的分割方法外,你还有别的分割方法来求这个组合图形的面积吗?”从而引发学生的发散思维。

  电脑显示学生可能想到的分割方法

  ①分成一个三角形和一个长方形;

  ②分成两个梯形;

  ③分成三个三角形。

  其它方法给予口头定正正误。

  展示各种想法,得出组合图形面积的求法。

  发散引导,找出新的解法

  让学生观察分的方法后,提出问题:“刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?”

  电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。

  (这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)

4、小学数学《组合图形面积》优秀教案一等奖

  教学内容:

  《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”。

  教学目标:

  1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学准备:

  课件、图片等。

  教学过程:

  一、创设情境,引导探索

  师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。(指名回答)

  生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

  生2:这条小鱼的面是由两个三角形组成的。……

  师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

  【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

  二、探索活动,寻求新知

  师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  课件逐一出示图一、图二、图三,让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

  生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积=三角形面积+长方形面积—正方形面积

  图二:是由两个三角形组成的。

  面积=三角形面积+三角形面积

  图三:作辅助线使它分成一个大梯形和一个三角形。

  方法一:是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

  (板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

  方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

  方法三:作辅助线使它分成一个大梯形和一个三角形。

  (课件分别演示这三种方法)

  分割法添补法

  师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

  变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

  板书:分割法或添补法(转化):分解成简单图形。

  师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

  师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?

  生1:我想了解组合图形的周长。

  生2:我想知道组合图形的面积怎样计算。

  这节课我们重点学习组合图形的面积。

  【设计意图:“方法是数学的行为、思想是数学的灵魂”,既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】

  三、探讨例题,学习新知

  师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

  例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

  师:怎样才能计算出这个组合图形的面积呢?

  先让学生思考,再动手计算。

  交流汇报:

  方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

  师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

  指名学生找相应的条件。

  在实物投影仪上展出示学生的答案:

  ①5×5=25(平方米)

  ②5×2÷2=5(平方米)

  ③25+5=30(平方米)

  答:房子侧面墙的面积是30平方米。

  (注意检查做错的同学,找出错的原因。)

  师:除了这种方法,还有同学用别的方法吗?

  方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

  师:能找出每个简单图形的已知条件吗?让学生找相应的条件。展示学生答案

  长方形:长:5+2=7米、宽:5米;

  三角形:底是2米,高是2.5米。

  5×(5+2)—2、5×2÷2×2=35—5 =30(平方米)

  答:房子侧面墙的面积是30平方米。

  方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。同样让学生找出计算梯形面积的相应已知条件。

  展示学生的答案

  (5+7)×2、5÷2×2=30(平方米)

  答:房子侧面墙的面积是30平方米。

  让学生发表意见。

  小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

  师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

  【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

  对求它的面积会有一定的思考,把自己所知道的'方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

  四、利用新知,解决生活中的问题

  做一做

  刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

  方法一:把组合图形分割成两个长方形。 4×3+3×7 =12+21 =33(cm2)

  方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)

  第三种方法:分割成两个梯形。(3+7)×3÷2+(3+6)×4=7×6—3×3 =42—9 =33(cm2)

  让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

  练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。

  孩子们利用今天所学的知识,做个助人为乐的学生,好吗?

  现在你能帮工人叔叔算算这

  个指示路牌的面积吗?

  【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

  五、课堂评价

  师:这节课你学到了什么?

  结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

  【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

  课堂检测A

  1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

  现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要

  2500元。如果让你决定,你会选择哪家公司?

  2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

  课堂检测B

  1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

  想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

  答案:课堂检测A

  1、50×33+35×12÷2=1650+210=1860(厘米)

  2、33×26—26×13÷2=758+169=927(厘米)

  课堂检测B

  1、(40+70)×30÷2—30×15=1650—450=1200(厘米)

  2、长方形地的面积:18×12=216(平方米)

  绿草面积(一半):216÷2=158(平方米)

  黄花面积:216÷4=58(平方米)

  红花面积:216÷4=58(平方米)

5、小学数学《组合图形面积》优秀教案一等奖

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的`实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

6、小学五年级数学上册《组合图形的面积》教学反思

  一分耕耘一分收获。这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。针对本节课,我有一下反思:

  同时,使学生在头脑中对组合图形产生感性认识,更为下一步探究组合图形面积做好铺垫。

  一、联系生活,体会组合图形必要性

  引导学生寻找生活中的.组合图形:从我们生活中哪些物体的表面可以找到组合图形。让孩子们感受学习组合图形的必要性,也进一步引导学生关注生活中的各个问题,培养学生关注生活的习惯,善于发现问题善于提问题。

  二、探究方法,寻求解决问题最优化

  在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、自主探索、培养了能力。为每个学生提供数学活动的时间和空间,鼓励学生用不同的方法进行计算,开拓学生的思维,并引导学生寻找最简单的方法,实现方法的比较,同时也是反思自己的方法和学习别人方法的一个很好时机,通过学生的探索、交流、讨论、优化、使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。

  学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。

  三、总结全课,学习解决问题方法

  引导学生对本节课学习内容进行回顾,引导让学生在总结上有所提升,在知识方面,还有数学方法和数学思想方面都应该有收获的。

  对于本节课,暴露出的问题:

  1.各环节时间的分配。本节课在各环节的分配上有所欠缺,需要对各环节有个提前预设,需要适当的引导孩子们在有效的单位时间内进行学习,达到预期的学习效果。课堂进行中,给于人的印象为赶,这就不能照顾到后进生,导致他们对本节课失去学习欲望。

  2.语言艺术。本节课的课堂评价过于单一,引导孩子们过渡环节以及布置任务的目的性上不明确。

  3.组合图形方法优化上。虽然引导孩子们质疑可以使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,可以达到计算组合图形的面积,但由于给予孩子们更多的时间相处更多的方法,从而忽略个后进生,也忽略了孩子们想表现自我的心理,导致出现个各个相同分割的方法。本节课没有在最后引导孩子们达到“分割的图形越简洁,计算起来越简便”也是本节课的一大不足。

  4.在课堂生成上,没有及时的进行快速思考,导致一些生成没有及时的解决,忽略后,孩子们的质疑没有解决,也不能达到学习的效果。

7、新课标小学五年级数学上册《组合图形面积》的教学反思

  组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

  在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的 (分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少 要计算第二个长方形的面积,长是多少,宽是多少 在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的.分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。

8、五年级数学上册《组合图形面积》优秀教学反思

  《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元第一课时的内容(北师大版义务教育课程标准实验教科书五年级数学上册第75——76页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上安排学习的。

  本节课,重在引导学生结合实际情境和具体的图形来探索组合图形面积的计算方法,不仅能够巩固已学的基本图形面积的计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,提高学生的综合能力,为以后立体图形的学习做好铺垫。在本节课的教学过程中,我注重了以下几个方面

  1、创设情景,激发学习兴趣。

  好的开始等于成功的一半。本课一开始我就从介绍学生所熟悉的笑笑和她家的新房入手,进而出示房屋平面图,让学生观察得出这个图形是由几个已学过的图形组合而成的,接着再出示一组生活中的组合图形,使学生充分感受到数学与生活的'密切联系,激发学生的学习兴趣,为下一步探究组合图形做好铺垫。

  2、让学生在自主探索的基础上进行合作交流。

  本节课,我组织学生以小组为单位,采用小组合作的学习方式,让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  学生在探索的过程中,放手让他们拼画图,分割图,并自行解决提出的问题。让学生在画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。

  3、注重方法的指导与总结。

  组合图形,从不同的角度认识,每个图形均可分为相应的几个部分。学生在解答中也将产生不同的思考方法。因此,在本课的教学过程中,我十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设小组合作和自主探索的情境,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法,让学生通过一题多解的训练,培养学生的发散思维,体验成功的愉悦

  总的来说,本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

  当然,每节课都不可能做到十全十美,本节课,我认为也还有很多细节的地方需要改进,比如教师语言的启发性,小组合作及学生动手操作时方法的指导,以及学生汇报的形式等等,这都有待于在今后的教学中进一步加以完善。

9、《组合图形面积的计算》数学教学反思

  本课是小数数学的空间与几何的内容,与生活联系紧密,有较强的实用性。全课主要借助自主个性学习平台,开展自主探索、交流学习的方式进行学习。

  主要的流程是:

  1.先以风筝制作活动的作品(由学过的基本图形组合而成)引入,激发学生兴趣。

  2.布置自主复习基本图形如平行四边形、三角形等的面积计算的推理,渗透转换思想。并由学生来向其他同学来介绍各自的转换方法。

  3.新授组合图形的面积计算,通过观察生活中的图形,用自学方式进行。

  4.交流自学结果,总结求组合图形面积的基本思想:合理割补、分块求积及加减组合。

  5.队旗的组合图形实例的教学,让学生实践分块、加减及割补的方法。

  6.练习新知,自主选择不同难度的进行练习。

  7.交流练习、集体订正。

  8.课堂小结,并向学生介绍自主学习平台的使用,使学习的时间与空间都向课堂以外作出延伸。

  优点:

  1.以风筝这一生活中组合图形实例导入,能在一定程度上激发学生兴趣。同时,更能在展示的时候,使学生初步认识到组合图形与基本图形之间的一点联系。

  2.用自主复习(练习旧知)的方式,边操作边计算,使学生既完成了旧知的巩固练习,为接下来作好计算上的必要准备,更用平行四边形等图形的推理中的转换思想作引导与渗透,更为进行求组合图形的面积作好思想与方法上的准备。

  3.在自主旧知复习的终了,教师通过信息技术的合理运用,将所有学生的答题情况汇总,并能根据总体情况及照顾个别学生的特殊情况作出合理的教学调整,因材施教。

  4.教师在学生自学新知时,能布置清楚学习的目标、步骤,更有清楚的方法指导、资源的提供,为学生的自主学习提供必要的支撑,使学生有目标、有步骤、有方法、有内容、有素材。

  5.通过学生自学,动手试做练习等,让学生在做中学,充分体验。汇报自学成果,由学生总结出解决的方法,让学生在汇报中得到成功的感受,以刺激学生乐于学。

  6.队旗的实践中,由学生提出分块解决问题,将数学的学习运用于生活中,也培养了学生的实际运用意识,体验数学的有用性,但从整个教学过程中,可以发现这也是有限的。

  7.练习新知时,自主进行,可以根据学生自己的情况进行不同的内容、层次的学习。

  8.在小结时,再次点明自主学习平台的优势,鼓励学生在课后校外等再学习,拓展延伸了学习的时间与空间。

  不足与改进设想:

  1.在以风筝导入时,语言并不够生动,在情感方面未能真正起到鼓动,兴趣未必能得以很多程度的激发。建议:如果能在教师出示1、2个风筝图形后,再由学生来介绍个把自己见过或想到的由基本图形组合而成的'风筝形状,那样会起到更好的效果,让材料更贴近学生,更能激发兴趣。

  2.同样在导入时,出示风筝图,但只是简单地看,而未作合理地利用与分析。建议:如教师能在此作出适当地引导,问“你发现各风筝是由什么图形组合而成的?”让学生更鲜明地知道组合图形与基本图形的关系。

  3.练习新知时,虽然教师采用自主选择适合自己的进行练习,但是这所有的内容都是开放的,学生对自己的自评能力通常会过高或者过低,如何让学生真正在这种形式中选择到适合自己的内容。建议:如果能在这一环节,教师能对学生的练习内容的选择上起到一定程度的限制,让学生在一定自由的范围内进行自主选择的练习,这样更能适合每位学生的发展。

  4.在小结后,出现了一个七巧板的拼图游戏,教师可能是想调动学生在课后继续学习的积极性而设计的,但学生并未体验,实际上是形同虚设。建议:但如果将此内容换成其他内容,或者引导学生在生活中再去探索组合图形的实例并解决实际问题,并在相关的网络平台上交流学习心得体会会更有效果,更能培养运用意识,体验数学的有用性。

  5.建议:(接上面4)将七巧板的游戏放在一开始的导入阶段,让学生在玩中进入学习状态,更自然,可能要比风筝可能激发学生的兴趣。

  6.组合图形这一内容,是小学数学中的几何板块,与生活联系紧密,所以应尽可能借此培养学生对数学的运用意识。而本课中教学的例题、练习等都相对离学生较远,应考虑再寻找更近的素材。

  7.过分依累于信息技术这一平台,将所有的学生的练习书写等都在电脑上进行,虽能方便教师汇总学生的学习情况,调整教学,但也有以下一些不足:

  (1)可能会受到学生实际电脑的操作水平的限制,可能会给此类同学造成学习上的不利;

  (2)也因此教师没能在板书中出示解题的范例,学生没有明确的规范,并不能帮助真正需要这些帮助的同学;

  (3)在电脑上答题,书写过程中出现“*”“/”等符号来表示“×”与“÷”,对于数学这一学科的实际要求,是否规范有待商讨。

  建议:必要的板书或范例仍需要出现,我们只要运用网络与信息技术解决传统教学不能或不能很好解决的难点,未必要将整个教学过程都完全挂在电脑与网络上进行。

10、五年级数学上册《组合图形的面积》教学反思

  在本节课中,我从学生喜欢的复习形式引入组合图形,重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。在让学生自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。接着让学生来说说自己的做法,学生汇报了不同的分法后,就让学生用自己喜欢的`方法去进行图形的面积计算,然后让学生汇报展示。接着做了一些巩固练习,加深理解。

  在我的教学过程中,我觉得这节课中还存在以下不足:

  1、这堂课讲的太多,应发挥学生的主体作用,让学生推导归纳已学过的长方形、正方形、平行四边形、三角形与梯形的面积公式,既加深学生印象,又锻炼了思维。

  2、没有将割、补、割补的思想方法进行总结,练习反馈时,没有将结果进行优化;

  3、练习设计上应该分为三个层次:给图形,条件,求解;给图形,不给条件,求解;可分却不可求解。层层递进,才符合学生的思维规律。

  在今后的教学中,我将继续努力,尽量让学生多说,多自主探究,充分尊重学生的主体作用。

11、数学五年级上册《组合图形的面积》教学反思

  一分耕耘一分收获。这次的校内公开课,让我感受颇深。对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。针对本节课,我有以下反思:

  一、自主拼图,建立组合图形模型

  课前安排学生利用七巧板制作自己喜欢的图案,课上展示,这是根据学生已有的知识经验和生活经验进行的。通过这样的活动使学生明白组合图形是由多种平面图形组成的,可以有多种不同的组合方法等。这样做不但使学生热情高涨,兴趣浓厚,而且增加了神秘感,也具有挑战性,同时,使学生在头脑中对组合图形产生感性认识,更为下一步探究组合图形面积做好铺垫。

  二、联系生活,体会组合图形必要性

  引导学生寻找生活中的组合图形:从我们生活中哪些物体的表面可以找到组合图形。让孩子们感受学习组合图形的必要性,也进一步引导学生关注生活中的各个问题,培养学生关注生活的习惯,善于发现问题善于提问题。

  三、探究方法,寻求解决问题最优化

  在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、自主探索、培养了能力。为每个学生提供数学活动的时间和空间,鼓励学生用不同的方法进行计算,开拓学生的思维,并引导学生寻找最简单的方法,实现方法的比较,同时也是反思自己的方法和学习别人方法的一个很好时机,通过学生的探索、交流、讨论、优化、使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。

  学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。

  四、总结全课,学习解决问题方法

  引导学生对本节课学习内容进行回顾,引导让学生在总结上有所提升,在知识方面,还有数学方法和数学思想方面都应该有收获的。

  对于本节课,存在的问题:

  1.各环节时间的`分配。本节课在各环节的分配上有所欠缺。

  2..组合图形方法优化上。虽然引导孩子们质疑可以使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,可以达到计算组合图形的面积,但由于给予孩子们更多的时间相处更多的方法,从而忽略个后进生,也忽略了孩子们想表现自我的心理,导致出现个各个相同分割的方法。本节课没有在最后引导孩子们达到“分割的图形越简洁,计算起来越简便”也是本节课的一大不足。

相关文章

推荐文章