教案

四年级上册数学乘法的交换律教案一等奖

2023-07-29 09:30:14

  四年级上册数学乘法的交换律教案一等奖

四年级上册数学乘法的交换律教案一等奖

1、四年级上册数学乘法的交换律教案一等奖

  教学内容:

  九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。

  教学要求:

  1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

  3.增强合作意识,激发学生学习数学的兴趣。

  教学过程:

  一、猜谜引入

  1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

  生:(积极举手,低声喊)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

  2.提问:用字母如何表示加法交换律、结合律呢?

  适时板书:a+b=b+a a+b+c=a+(b+c)

  3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

  [评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

  二、猜测验证

  1.猜一猜:乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:

  2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  [评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

  4.交流。

  (1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

  提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

  提问:你能用自己的语言描述一下乘法交换律吗?

  生:两个数相乘,交换乘数的位置,积不变。

  师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

  师:和你们说的有什么不同?

  生1:我们说的是乘数,但书上说的是因数。

  生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

  师:会用字母表示吗?板书:ab=ba)。

  电脑出示练习十七第2题。

  师:请你判别一下,有没有运用乘法交换律?并说明理由。

  [评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

  (2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。

  生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

  生6:我们是用算式来说明的,如:(3467)23=34状6723)。

  提问:同学们能用自己的.语言描述一下乘法结合律吗?

  生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  师:你说得很准确,有什么好方法帮助记忆?

  生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

  生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

  师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)

  [评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

  5.比较加法运算定律和乘法运算定律。

  师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

  生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

  生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

  [评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]

  三、运用

  1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

  生:我们验算乘法时就应用了乘法的交换律。

  2.基本练习。

  3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

  869=( )

  [评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]

  四、小结。(略)

2、四年级上册数学乘法的交换律教案一等奖

  教学目标

  1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的`实际问题。

  教学重点:借助实际问题,进一步体会加乘法交换律和结合律。

  教学难点:用乘法交换律和结合律整理算式。

  预设过程

  一、复习引入

  1、前面我们学习了哪些加法运算定律?你能说一说吗?

  2、教师根据学生的回答板书(用字母表示)

  3、猜测:乘法中会有什么运算定律?你能猜一猜是怎样的吗?

  4、揭题

  二、自主学习

  1、自学书P33-35

  2、反馈:你们学懂了什么?

  (1)乘法交换律是怎样的?你能说一说吗?

  你能用字母表示吗?在哪些地方运用到它?

  (2)乘法结合律是怎样的?你能用你喜欢的方法表示吗?

  3、提问:你们还在什么困难?

  引导学生质疑、解决。

  4、比较沟通:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你们发现了什么?(交换律:都是两个数相加、相乘,交换位置,和(积)不变;结合律:都是三个数相加、相乘,前面两个数相加(乘),也可以把后面两个数相加(乘),和(积)是不变的)

  三、巩固运用

  1、口算:练习六第1题

  2、针对练习:根据运算定律在方框里填上合适的数。

  3、做一做:第1题,你有什么想法?

  4、解决问题:做一做第2题

  四、总结:你们在什么收获?

  五、作业布置:

  1、《作业本》

  2、102×1398×13

  作业设计

  课堂作业本P14

  口算训练P15

  教学反思:本节课让学生通过自学,效果非常好,节时高效。由于这节课的内容和上节课的内容有很多相似之处,采用让学生自学的方法,学生倍感兴趣,他们时而点一点,时而圈一圈,不仅掌握了本节课的知识,他们还提出了问题:如果是四个数相乘,能够运用乘法结合律先把中间两个数相乘吗?通过讨论,学生发现了即便是更多的数,也可以把中间两个数先乘。

3、四年级上册数学乘法的交换律教案一等奖

  教学内容:青岛版四年级下册第24-25页红点内容

  教学目标:

  1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

  2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

  3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重点:理解和掌握乘法分配律的推导过程。

  教学难点:理解和掌握乘法分配律的推导过程。

  教学准备:课件,卡片(课前发给学生)

  教学过程:

  一、拟定自学提纲

  自主预习

  1.创设情境:(多媒体出示24页情境图)

  教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

  (学生可能提出济青高速公路全长大约多少千米?

  相遇时大巴车比中巴车多行多少千米?)

  (教师把这两个问题板书在黑板上。)

  教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

  2.出示学习目标:这节课的学习目标是:(多媒体出示)

  (1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

  (2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

  教师引导:有信心达到这两个目标吗?(有!)

  老师的指导会对你们的学习有很大的帮助,请看自学指导:

  3.出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:

  (1)如何求济青公路的全长,有几种解法,如何列式计算。

  (2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

  (3)什么叫乘法分配律,如何用字母表示?

  5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

  4.学生按自学指导自学,教师巡视,关注学困生。

  二、汇报交流评价质疑

  调查学情:看完的同学请举手!看会的请放下。

  1.小组交流:

  学习中你有哪些收获、困惑和体会,请在小组内交流一下。

  2.班内汇报:

  师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

  课堂生成预设:

  (1)济青高速公路全长大约多少千米?

  教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

  预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

  预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

  (2)相遇时大巴车比中巴车多行多少千米?

  (110-90)×2110×2-90×2

  =20×2=220-180

  =40(千米)=40(千米)

  教师追问:你能说说两种算式的意思么?

  预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

  预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

  (3)观察、比较两种算法的过程和结果,你有什么发现?

  预设一:第一种算法是先加(或减)再乘;

  预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

  (4)据此,你有什么猜想?

  预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

  (5)怎样验证你的猜想呢?

  (师用线段图帮助学生理清思路)

  学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

  通过观察,有何发现?引导学生回答:

  举例验证:(125+12)×8=125×8+12×8

  (40-4)×25=40×25-4×25

  (8+16)×125=8×125+16×125

  (80-8)×125=80×125-8×125

  …………

  (6)通过验证,你能得出什么结论?

  结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

  教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

  (板书课题)你会用字母表示这个规律吗?

  (用字母表示:(a±b)c=ac±bc)

  三、抽象概括总结提升

  1.通过以上研究,你得到了什么结论?

  课堂预设:

  预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

  预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

  预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

  预设四:这个规律叫乘法分配律,可以用字母表示为:

  (a±b)c=ac±bc

  2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的'猜想?

  课堂预设:

  举例验证:(2+3+5)×4=2×4+3×4+5×4

  (1000+100+10)×3=1000×3+100×3+10×3

  …………

  教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

  设计意图:将乘法分配律适当拓展

  3.在记忆这个规律时,应该注意什么?

  【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。

  课堂预设:

  预设一:括号里的每一个数都要乘括号外的数。

  预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。

  预设三:这个规律还可以倒过来看。

  教师追问:怎样倒过来看?

  预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。

  四、巩固应用拓展提高

  教师引导:怎么样?学会了吗?想不想挑战一下自己?

  1.考一考(课件出示第26页第2题)

  (1)指4名学困生板演,其余同做在练习本上。

  (2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

  课堂预设:(以第一题为例)

  (80+70)×5(80+70)×5

  =80×70+70×5=80×5+70×5

  2.议一议

  (1)你认为谁的答案对,为什么?谁的答案不对,为什么?

  (2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。

  (3)用同样的方法评议其余3题。

  (4)同桌互改

  (5)统计错题情况,让小组代表说说错误原因。

  (6)学生各自订正错题。

  3.全课小结:你在本节课中有什么收获?

  课堂预设:

  预设一:我知道了什么是乘法分配律。

  预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

  预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

  五、当堂训练

  1.出示课本第26页第3题

  2.《新课堂》第17到第19页信息窗2第1课时内容。

  同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

4、四年级上册数学乘法的交换律教案一等奖

  教学目标

  1.使学生理解乘法分配律的意义.

  2.掌握乘法分配律的应用.

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用

  教学难点:乘法分配律的反应用.

  教具:教学课件一套

  教学过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  7×28+7×72

  7×(28+72)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  7×28+7×72=7×(28+72)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

  2、商场“五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

  (1)看到这幅图画,你了解到了什么信息?你想提什么问题?

  (2)你能用两种方法列出综合算式吗?

  (3)学生独立列式,教师巡视

  (4)交流反馈:你是怎么想的,怎样列式计算

  板书:65×5+45×5(65+45)×5

  (5)观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  用字母表示:〔a+b〕×c=a×c+b×c

  用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

  (5)大屏幕出示关于乘法分配律的总结,学生齐读。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  四、巩固内化

  1、做“想想做做”第1题

  学生独立填写,指名报,全班共同校对。

  明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

  2、做“想想做做”第2题

  学生自己判断。然后请生说说判断的依据。

  3、做“想想做做”第3题

  让每位学生都用两种方法计算长方形的周长,指名板演。

  明确:这两种算法有什么联系?符合什么规律?

  小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

  4、做“想想做做”第4题

  让学生各自按运算顺序计算,指定两人板演,共同订正。

  提问:每组两道算式有什么联系?哪一题的计算比较简便?

  小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

  五、总结回顾

5、四年级上册数学乘法的交换律教案一等奖

  【教学内容】:苏教版四年级上册P56-57例题及P58的“想想做做”。

  【教材简析】: “加法的交换律和结合律”是苏教版小学数学四年级上册中的内容。教材中采用了不完全归纳推理,安排了学生生活中最喜欢的活动项目跳绳和踢毽子,求参加活动的人数,然后让学生通过比较、讨论、观察、发现不同解法之间的共同特点,从而推导出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性、合理的构建知识。同时也为学习简便计算作适当得渗透和铺垫。

  【教学目标】:

  1、引导学生从熟悉的实际问题的解答入手,理解并掌握加法交换律和结合律,初步感受加法运算律。

  2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,初步形成独立思考和探究问题的意识和习惯。

  【教学重点】:

  使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  【教学难点】:

  使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

  【教学过程】:

  一、情境导入:

  1.同学们,以前我们进行过许多加法计算,这节课我们继续研究学习加法,去探求加法中的其他秘密。

  2.多媒体出示例题情境图,仔细观察这幅图,你能从图上获取哪些数学信息?(学生自由说)

  3.你能根据这些信息,提出哪些用加法计算的问题?

  ①参加跳绳的一共有多少人?

  ②、参加活动的女生有多少人?

  ③、男生跳绳和女生踢毽子的有多少人?

  ④、参加活动的一共有多少人?

  4.总结:我们在三年多的时间里,进行过好多加法计算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题:运算律)

  二、探索加法交换律:

  1、学生观察例题情境图,教师提出问题。

  ①要求参加跳绳的有多少人,应该怎样列式计算?

  指名一学生回答,教师板书:28+17=45(人)

  ②还可怎么列式?板书:17+28=45(人)

  ③这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?又有什么是不同的?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

  师:这两道算式的得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28

  ④你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。

  ⑤请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

  ⑥从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)

  小结:同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),国际上一般用字母来表示这些规律,我们用a来表示第一个加数,b来表示第二个加数,这些算式可以用字母表示为:a+b=b+a

  【设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在探索中发现,培养了学生的抽象概括能力。】

  2、练习: 完成“想想做做”第3题。

  三、探索加法结合律

  1、提出问题:参加活动的一共有多少人?

  ①学生列式计算,教师行间巡视,注意发现用不同的方法解答,并指名两人板演不同方法的算式。

  ②提问:这两道算式有什么相同的地方和不同的地方?学生观察和比较这两个不同算式的计算结果。

  ③这两道算式结果相同,我们可把它写成怎样的等式?

  板书:(28+17)+23=28+(17+23)

  指出:这两个算式中三个加数分别相同,加数的位置也相同。但两个算式中相加的顺序不同:左边的算式是先把前两个数相加,再同第三个相加;右边的算式是先把后两个数相加,再同第一个相加。不管哪两个数先加,最后的结果都是一样。

  2.出示下面两组算式,观察并探索其中的规律。

  (30+10)+50○30+(10+50) (27+23)+47○27+(23+47)

  讨论:

  ①这几组算式有什么共同的地方?有什么不同的地方?

  ②你从这些例子中可以发现什么规律?

  ③如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?

  板书:(a+b)+c=a+(b+c)

  提问:这里的`a表示什么?b表示什么c表示什么?(a+b)+c表示什么?a+(b+c)表示什么?

  3.小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法结合律)

  【设计意图:学生在充分感知加法交换律的基础上,构建了简单的数学模型,使学生体会到符号的简洁性,从而概括出用字母表示的加法的结合律。】

  四、巩固运用运算律

  1、做第58页“想想做做”第1题.

  学生填写,并说说每题是根据什么运算定律填写的。

  2、做“想想做做”第2题。

  学生在□里填上合适的数后,要让他们说说这样填应用了加法的哪条运算律。

  3、做“想想做做”第4题。

  ①学生计算,并说说每组中两题的联系。

  ②比较每组中的两题,哪一题计算起来更加简便。

  4、做“想想做做”第5题。

  练习后让学生思考:这种形式的练习有什么作用?从而为后面学习简便计算作准备。

  【设计意图 :通过这几个层次的练习,为学生提供了具有价值的学习内容,开放了学生的思维空间,促进学生灵活地理解和掌握知识。】

  五、总结全课

  这节课我们学习了加法的哪两个运算律?同学们能一起说说它们的具体内容吗?

  六、 板书设计:

  运算律

  加法交换律           加法结合律

  28+17=17+28          (28+17)+23=28+(17+23)

  a+b=b+a             (a+b)+c=a+(b+c)

6、四年级数学上册《乘法结合律》的教学反思

  核心提示:这节课的教学目的是:让学生通过计算、观察、交流、归纳等活动,经历探索乘法结合律的全过程,理解并用字母表示乘法结合律,能运用乘法结合律进行简便计算。在新授过程中,我比较注重学生认知规律和探索规律的方法与...

  这节课的教学目的是:让学生通过计算、观察、交流、归纳等活动,经历探索乘法结合律的全过程,理解并用字母表示乘法结合律,能运用乘法结合律进行简便计算。

  在新授过程中,我比较注重学生认知规律和探索规律的方法与过程,放手让学生自己去发现,把看到的现象用数据去验证,并引导他们用自己的语言归纳总结。从学生反馈回来的情况看,学生学得很不错。在学习过程中,我还用大屏幕出示了课本上语言较为严密的乘法结合律,与学生自己归纳总结的'乘法结合律作比较,学生当时就把这个规律牢记在心中,效果很好。

  改变评价方式,我抓住学生的已有感知,提出“观察这一组等式,你能发现其中的奥秘吗?”等类似的问题,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的评价的多元性也体现了出来。

7、四年级数学下册《乘法交换律和结合律》的教学反思

  乘法交换律和乘法结合律是四年级数学下册的学习内容,是对乘法运算的一种优化。上课之后从以下几个不同的方面对本节课做反思。

  一、思得

  为了使学生能够尽快切入主题,我将主题图中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。

  二、思失

  同样,节省时间的同时,一副完整的主题图让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者平时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。

  三、思效

  虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的'孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在平时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。

  四、思改

  本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!

  关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的程度。

8、四年级数学上册《乘法分配律》教学反思

  乘法分配律教学是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上进行的。它是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验、练习中理解乘法分配律,从而达到熟练掌握的效果。

  一、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  二、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。举例:设计学校买书的情景。让学生帮助出主意。出示:“一套故事书45元,一套科技书35元,各买3套书。一共需要多少元钱?”让学生尝试通过不同的方法得出:(45+35)×3=80×3=240(元)、45×3+35×3=135+105=240(元)。此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”

  本节课气氛活跃,学生积极性高。可通过练习发现孩子们掌握得并不如意,在下节课我将继续加强练习。

相关文章

推荐文章