教案

四年级数学教案一等奖《乘法的意义和运算定律》

2023-06-29 11:42:10

  四年级数学教案一等奖《乘法的意义和运算定律》

四年级数学教案一等奖《乘法的意义和运算定律》

1、四年级数学教案一等奖《乘法的意义和运算定律》

  教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

  教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点难点:乘法的意义和乘法交换律

  授课类型:新授课 练习课

  教学方法:讨论法、讲授法

  授课时间:一课时

  教具准备:多媒体

  教学过程:

  一、复习

  教师出示复习题。

  1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  上面这些题哪些可以用乘法计算?为什么?

  二、新课

  1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  解答这道题用乘法计算简便还是用加法计算简便?

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  2、教学乘法交换律。

  让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

  三、巩固练习:

  1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

  2、做练习五的第3、4题。学生独立做完后,再集体核对。

  四、作业:练习五的.第1、2、5题。

  小结:今天我们学了什么?什么叫乘法的交换律?

  附板书:乘法的意义和乘法交换律

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

2、四年级数学教案一等奖《乘法的意义和运算定律》

  教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

  教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点难点:乘法的意义和乘法交换律

  授课类型:新授课 练习课

  教学方法:讨论法、讲授法

  授课时间:一课时

  教具准备:多媒体

  教学过程:

  一、复习

  教师出示复习题。

  1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2、同学们做纸花,小学数学教案《数学教案-乘法的意义和运算定律》。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  上面这些题哪些可以用乘法计算?为什么?

  二、新课

  1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  解答这道题用乘法计算简便还是用加法计算简便?

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  2、教学乘法交换律。

  让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

  三、巩固练习:

  1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

  2、做练习五的第3、4题。学生独立做完后,再集体核对。

  四、作业:练习五的第1、2、5题。

  小结:今天我们学了什么?什么叫乘法的交换律?

  附板书:乘法的意义和乘法交换律

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  求几个相同加数的`和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

3、四年级数学教案一等奖《乘法的意义和运算定律》

  教学目标

  1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2、过程与方法:通过学生猜想, 观察、比较、概括、联想等方法,使学生理解并掌握乘法的交换律和结合律,培养学生的分析推理能力,发展思维的灵活性。

  3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:学生发现乘法交换律和结合律的过程

  教学难点: 验证乘法交换律和结合律的过程,能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

  教学过程:

  一、创设情境,生成问题

  1、我们学习了哪些运算定律?谁能说一说?什么是加法交换律,用字母应该怎样表示?加法结合律呢?

  a+b=b+a (a+b)+c=a+(b+c)

  2、引入新课:同学们猜一猜:这是我们学习的加法交换律和加法结合律,那么乘法可能有哪些运算定律呢?

  二、自主探究、验证猜想

  1、验证乘法的交换律

  同学们到底猜得对不对呢,这就需要我们来验证

  保护环境对人类非常重要,植树是一件非常有意义的事,瞧,小明和他的小伙伴们正在植树呢(出示例5主题图)。

  (1)、请同学们仔细观察主题图。从图上你发现了哪些数学信息?

  (2)、根据这些数学信息你能提出哪些数学问题?

  (3)、小组讨论,指名汇报并解答

  a 、负责挖坑、种树的共有多少人?

  25×4=100(人)4×25=100(人)

  探究、发现问题:

  教师提问:4×25和25×4得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(引导学生回答,明确:4×25=25×4) b 、负责抬水、浇树的共有多少人?

  25×2=50(人)2×25=50(人)

  仔细观察这两人个算式,你发现了什么?

  C 、每组要浇多少桶水?

  5×2=10(桶)2×5=10(桶)

  仔细观察这两人个算式,你发现了什么?

  (4)、仔细观察这几组算式,你有什么发现?学生谈发现.

  25×4=4×25

  25×2=2×25

  5×2=2×5

  (5) 、请学生用自己的话来叙述发现的规律?(师根据学生的回答进行汇总)

  两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。这就验证了同学们的猜想,乘法确实有交换律。

  (6)、你能用自己喜欢的方式表示出乘法的交换律吗?(学生独立完成,指名汇报)

  甲数×乙数=乙数×甲数

  × = ×

  a × b = b × a

  (7)、你最喜欢哪一种?

  (8)、其实乘法交换律在我们以前就用到过,同学们回忆一下在哪些地方用过(学生思考后回答),再次证明交换两人个因数的位置积不变。

  2、验证乘法结合律

  刚才我们通过自己提出问题,解决问题,发现了乘法交换律确实存在,那乘法结合律是不是也真的存在呢,接下来我们自己举例验证

  (1)、学生自己举例,小组交流,初步验证乘法结合律

  (2)、指名汇报.

  (8×4) ×5= 8×(4×5)

  (5×2) ×3= 5×(2×3)

  (25×4) ×1= 25×(4×1)

  (3)、仔细观察这几组算式,你有什么发现?学生谈发现.

  (4)、刚才同学们通过举例来初步验证了乘法结合律的存在,老师也用了一道应用题来进行验证,再次验证乘法的结合律。

  a 、出示例6

  b 、学生理解题意,找出已知条件和所求问题。

  c 、你能用不同的方法解答吗?学生独立列式

  (25×5)×2 25×(5×2)

  =25×10 =125×2

  =250(桶) =250(桶)

  d 、仔细观察这组算式,你有什么发现?学生谈发现.

  (25×5)×2 = 25×(5×2)

  (5)、通过刚才解决这道题,我们再一次验证了乘法结合律的存在,什么叫做乘法的结合律呢?

  三个数相乘,先乘前两个数,或者先乘后两个数,它们的积不变,这叫做乘法结合律。

  (6)、你能用字母表示出乘法结合律吗?

  3、比较加法交换律和乘法交换律,加法结合律和乘法结合律,你有什么发现(学生仔细观察,谈发现)

  三、巩固与练习。

  1、填空。

  12×32=32×( )

  108×75=( )×( )

  60×( )=8×( )

  25×( )=( )×25

  30×6×7=30×(6× )

  125×(8×40)=( × ) ×( )

  2、你能很快算出每组气球上三个数的积吗?

  3、你能用简便方法计算吗?

  23×15×2 5 ×37×2

  492×5×2 25×166×4

  8×5×125×40

  五、小结。

  这节课学习了什么内容,你有哪些收获?

  六、作业布置。教材27页的第2、3题。

4、四年级数学教案一等奖《乘法的意义和运算定律》

  教学目标:

  1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。

  2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

  3、能够运用乘法的分配律进行简便计算。

  重点、难点:

  重点:学生参与推导乘法分配律的过程。

  难点:乘法分配律的推理及运用。

  教学过程:

  一、回顾激趣,提出猜想.

  (1)同学们,学习新课前,我们先来回顾学过的运算定律。找出共同点?和或积同。

  乘法交换律的字母公式( )。 乘法结合律的字母公式( )…….

  (设计意图:四个公式板书在黑板,以便与乘法分配律对比)

  (2)利用学过的长方形周长内容得出两种不同解题方法。刚才的计算中你发现这两道题有什么关系吗?2×( 37+63) 2×37 + 2×63

  教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

  引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:2×( 37+63) =2×37 + 2×63

  (3)将学生的知识迁移到本节课新授内容,在课的开始,积极调动学生学习积极性。

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)

  我班同学男生27人,女生25人,每人植树3棵,共植树?棵(植树节3.12)

  (1)全班同学独立完成。

  (2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

  还有不一样的方法吗?谁来说说看?(生回答,师板书)

  板书:(27+25)×3 27×3+25×3

  评讲:算式(27+25)×3 和27×3+25×3的每一步各表示什么?谁能说给大家听听?

  (3)观察这两个算式,你有什么发现?

  引导学生比较两个算式异同点,并指名学生说一说自己想法,思路。

  生:这两个算式的得数是一样的。

  师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

  生:等于号

  师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,师:再和前面的'一组式子一起观察,

  (让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

  2、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

  (1)验证方法:要求每人出两组算式,数字随意举例,进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

  (2)学生回报:谁来说一说自己举的例子。

  (3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

  (4)轻声读这些等式,你发现了什么?

  (设计意图:通过多个例子,揭示乘法分配律的普遍规律)

  3、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

  学生回报。

  (出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

  同学们发现的这个知识规律,叫做乘法分配律。 (板书:乘法分配律)

  (3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

  结合学生回答,教师板书:(a+b)×c=a×c+b×c 齐声读两遍。

  (4)对于乘法分配律,用字母来表示,感觉怎样。

  与乘法交换律、结合律想对照:a×b=b×a (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c 比较有什么不同?

  (设计意图:增强学生对乘法分配律涉及到加法的运算难点的理解)

  三、加强应用、深化理解

  1、根据运算定律,在( )填上适当的数。

  (10+7) ×6=( )×6+7×( )8×(125+9)=( )×125+( )×9

  7×48+7×52=( )×(48+52) (7×48+7×52中有相同因数吗?)

  (设计意图:通过具体的练习理解乘法分配律)

  2、火眼金睛看一看:判断下面算式是否正确?并说明理由?

  56×(19+28)= 56×19+28 ( )

  32×(7×3)= 32×7+32×3 ( )

  25×12+12×75 = 12×(25+75) ( )

  25×99+25 =(99+1)×25 ( )

  3、利用乘法分配律,计算下列各题。

  ( 80 + 4 ) ×25 34 ×72 + 34 ×28 88×125试做

  师小结:通过前两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  4、34×10+27×10+39×10可不可以用乘法分配律

  师:说明乘法分配律,不仅仅只适用于两个数的和,也可以三个数的和,四个数的和可以吗?说明也可以是:几个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。(修改乘法分配律的板书)

  5、找朋友

  师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

  6、24×8—4×8=(24—4)×8吗?

  师:说明乘法分配律,不仅仅只适用于两个数的和,也可以是两个数的差,三个数的差可以吗?说明也可以是:几个数的和(或差)与一个数相乘,可以先把它们分别与这个数相乘,再相加(或相减)。(设计意图:拓展书本上乘法分配律的概念)

  7、用简便方法计算下列各题。(8+4)×25 34×72+34×28

  (设计意图:概念只有在具体的练习中才能逐步理解,概念教学必须当堂采用讲练相结合的方法,学生才能消化抽象的概念)

  四、总结:

  1,这节课你的收获是什么?什么叫做乘法分配律?(设计意图:不能让总结性提问只是走了过场,通过这个环节切实起到梳理知识,提高学生总结能力)

  2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能把下列等式填写完整吗?同学们课后交流一下,下节数学课我们再继续研究。

  教师激发学生好胜心:在乘法分配律中有许多变化,题里辨别出用乘法分配律简算的题呢?36×99+36 73×31+28×31—31

  3.思考:填写完整:

  a×(m-n)= a×125+b×125-c×125

5、四年级数学教案一等奖《乘法的意义和运算定律》

  教学目标

  知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

  能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

  培养学生观察、比较、抽象、概括等能力。

  培养学生的数感和符号感。

  情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

  教学重难点

  教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

  教学难点:应用乘法分配律解决实际问题。

  教学工具

  课件

  教学过程

  (一)生活引入,感知规律

  1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

  2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

  3、爸爸和妈妈都爱我,这句话还可以怎样说?

  4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

  5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

  [策略]把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

  (二)开放探究,建构规律

  1、情境引入

  讲本学期开学,学校要为一、二、三年级更换桌椅情况:

  (课件播放),提出问题,引发学生思考:

  (1)请仔细观察大屏幕:

  学校为一年级更换3套桌椅共需要多少钱?

  学校为二年级更换5套桌椅共需要多少钱?

  学校为三年级更换6套桌椅共需要多少钱?

  (2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

  (3)说说你的'解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

  (4)谁愿意接着汇报?

  2、第一次发现

  (1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

  小结:每一组算式的结果相等。

  (2)我把这两个算式用等号来连接,行吗?为什么?

  板书:(50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  3、第二次发现

  (1)再观察这三组算式,还有什么发现吗?

  (2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

  (3)每人举出一个例子,写在纸上,然后请同桌帮助验证

  汇报交流:像这样的例子还能举出一些吗?举的完吗?

  4、归纳总结:

  (1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

  (2)请看大屏幕,你们的意思是这样吗?小声读读。

  (3)有什么不懂的词吗?

  5、个性化理解

  (1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

  根据学生回答教师板书:

  (□+○)×☆=□×☆+○×☆

  (甲+乙)×丙=甲×丙+乙×丙

  (a+b)×c=a×c+b×c

  (2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

  (3)对于乘法分配律用字母表示感觉怎么样?

  [策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

  (三)激活联系、应用规律。

  1、请你把相等的两个算式连线。

  (8+13)×4 41×(3+27)

  3×(21+6) 7×5 +8

  41×3 +41×27 3×21 +3×6

  7×(5+8) 8×4 +13×4

  (1)你为什么连得这么快?是计算了吗?

  (2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

  2、根据乘法分配律填空:

  (83+17)×3=□×□○□×□

  10×25+4×25=(□○□)×□

  (1)谁愿意展示一下你填写的。有不同意见吗?

  (2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

  (3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

  [策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

  3、联系旧知、同已有知识建立联系。

  谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

  现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

  [策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

  (四)课堂小结:

  今天,学习了乘法分配律,你有什么想法?

6、苏教数学五年级上《整数乘法运算定律推广到小数》的教学反思

  因为新课程提倡“自主探究、合作交流”的学习方式,结合我校堂构建模式要求的问题“质疑---自解----建构”这一教学模式和10+30,3+1的教学 操作模块,。我将培养学生的自学能力,教会学生探究学习作为最最基本的`目标,这不仅要关注学生掌握知识的多少,更重要的是要关注学生是否亲历探索过程,是 否真正理解数学、是否在思维能力,情感态度和价值观等方面得到发展。我紧紧抓住“推广”两个字进行教学,精心设计了“四巧”即“巧”引入,“巧”探究, “巧”应用,“巧”巩固。课堂上,我没有占用过多的时间去讲解,而是巧妙地点拨、引导。通过本节课的教学实践,我深深地体会到,留给学生自由发展的空间, 学生参与的是获得知识的全过程。不是模仿书本或接受教师提供的现成结论来进行学习,而是自己本人把要学习的东西发现或创造出来,这样他们对所学的知识点就 记得快,记得牢,同时又培养了良好的学习习惯,挖掘了创造潜能。

  没有完美,本课教学完成后的发现不足之一是将定律迁移的过程有些生硬不是那么完美,其二是在验证过程似乎有些单一没有说服力。于是我决定对这两方面进行改进。进行第二次设计。

  将25×95×4 125×( 17×8) 17×25+83×25 直接演变为:2.5×95×0.4 1.25×(17×8) 17×0.25+83×0.25

  四道算式直接加上小数点问学生可以怎样计算,,为什么要这样计算?学生质会质疑,这样更顺利的迁移到小数计算当中。解疑过程让学生每人举一例乘法交换律, 全班六十余人会有六十多种结果但都可以验证小数同样适用。教师还鼓励有新发现的学生。(其实不会有)。另外几种定律也是采取小组先交流再全班汇报。这样一 来突出了验证过程增强了广度。有利于学生掌握用运用。

7、四年级数学下册《混合运算的性质和定律总复习》的教学

  时间的脚步是无声的,它在不经意间流逝,又迎来了一个全新的起点,何不赶紧为即将开展的教学工作做一个计划呢?那么教学计划怎么写才能体现你的真正价值呢?下面是小编收集整理的人教版四年级数学下册《四则混合运算的性质和定律总复习》的教学,欢迎阅读与收藏。

  一、着力引导学生自主探寻、整理数学知识

  首先出示六道不同运算顺序的计算题,让学生口答正确的运算顺序,即每步先算什么,再算什么。让学生充分回忆运算顺序的相关知识,体会运算顺序的不同。在学生充分回忆运算顺序的基础上,组织学生自主分类,在小组中充分交流,从而整理出三类不同类型计算题的的运算顺序,达到整理复习的目的。接下来我在学生归类的基础上进行运算顺序的提炼,“同级运算,从左到右”;“两级运算,先算高级”;“含有括号的运算,括号优先”,来强化学生的认知。

  然后在复习、强化运算顺序的基础上,再出示几种与刚才六道不相同的计算题,检测学生运算顺序使用的`正确与否。

  接着以最后一题为切入点,引出运算律这一概念,自然过渡到下一环节——运算律与运算性质的复习中来。让学生在小组中回忆并整理学过的各种运算律,并举例说明,注重概念定律与实际的结合。

  最后趁热打铁,加以引导:“其实减法和除法也有一些运算顺序,能让计算变得简便,回忆一下,相互交流一下。”进一步丰富学生运算规律的知识,促进学生对运算规律的认识。

  二、注意练习的层次性和形式的多样性

  在充分复习运算顺序和运算律的基础上,我还开展了三组有效的练习:

  第一组:填空。

  第二组:判断。选取学生常出现的错误,让学生进行判断改错,进一步强化学生对相关运算律及运算性质的认知。

  第三组:简便计算。这里进行强调:在计算中要仔细观察,有些不使用运算律和运算性质也可以简便计算; 有些题目无法一眼看出能否简便,但在计算过程中可以简便计算,更深一层的挖掘运算律及运算性质,体会实际运用中有时可以用平时积累的经验来简便计算,有时在计算过程中使用简便计算,强调灵活运用的重要性。

  存在的问题:

  1、由于间隔时间较长,大部分学生已经把运算律的内容忘记,导致不能灵活运用,从而达到简便运算的目的;

  2、部分学生甚至不能掌握运算顺序,即:先算乘除,再算加减,有括号的先算括号里边的;

  3、在计算过程中,仍然存在以前的问题,如:小数与分数的加减,整数、小数、分数的乘除运算。

  这些问题的存在,使我认识到:只有使他们真正理解四则混合运算的顺序和运算律,在计算过程中做到胆大心细,而要做到这些,任重而道远,必须找到一些典型例题,加强这方面的练习强度。相信在师生的共同努力下,一定能在四则混合运算中游刃有余。

8、数学四年级下册《乘法运算律》教学反思

  《乘法运算律》这节课我以建构主义学习理论位指导,力求体现“以学生发展为本”的指导思想。基于这种思想,设计课堂教学时,注意了以下几个问题:

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的'感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

9、四年级数学下册《加法的运算定律》教学反思

  《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:

  1.在解决问题的过程中探寻规律。

  英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。”

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的`活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。

  接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  2、对加法结合律的教学看法

  在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。

10、《运算定律与简便计算》四年级数学整理与复习的教学反思

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c)  连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的数感是密不可分的`,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4  9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

11、小学四年级数学《运算定律》教学反思

  本单元运算定律是运算的基本性质,被誉为数学大厦的基石,学生在学习的过程会比较抽象化,概括化,在学习的过程中,帮助学生去理解每一个定律的内涵及运算意义。我在教学过程中,重视符合学生已有的认知特点和横向知识结构,以研究思想,发展学生的数学模型思想,培养学生合理选择算法的能力,发展思维的灵活性。

  对于本单元的复习课,我首先充分了解学生的掌握情况,进行学情分析,帮助学生建立知识体系,形成逻辑思维能力,有条理清晰的掌握运算定律及每个定律的用法。如何选择合适的方法,在课堂上,我们师生共同归纳总结回忆,梳理知识点。对重难点,我重点强调,查漏补缺,接着让孩子们画思维导图,培养他们建立知识体系,用自己的方式来总结知识点。学习真正学会了什么,其实是形成自己的知识体系,学会方法和思想。

  思考:这一单元的学习我不断思考,运算定律对于孩子来说比较抽象,为了寻找答案,孩子们为自己设计了一条丰富生动的探索之路。课上,我们师生成为学习伙伴,在探究的过程中相互扶持,相互促进,不仅寻找问题的答案,更重要的是摸索出的一条研究的路径。其实,我们常常在教学中很有很多担心,担心学生找不到学习的方向,于是我们在教学中不停的敲黑板:看这是重点,快快看过来;担心学生够不到目标,所以我们在学习过程中设一个又一个问题,铺成一级又一级的台阶,扶着他们前行。担心学生走弯路,我们为他设计了一条康庄大道,连路上的小石子也要细细的扫开。而把握好课堂生成的资源,碰撞出思维的火花,促进新的教学内容生成,实现教学动态灵活发展并没有达到。这是我需要不断反思以及努力改进的方向。

相关文章

推荐文章