《鸽巢问题》的教学反思
1、《鸽巢问题》的教学反思
一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。
一、情境导入,初步感知
兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。
二、教学时以学生为主体,以学定教
由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的`同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。
三、通过练习,解释应用
四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。
不足:
1、学生们语言表达能力还有待提高。
2、课堂中教师与速较快。
2、《鸽巢问题》教学反思
数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
一、情境导入,初步感知
兴趣是最好的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。
二、活动中恰当引导,建立模型
采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。
在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。
三、通过练习,解释应用
适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。练习内容紧密联系生活,让学生体会数学来源于生活。练习由易到难,层层递进,符合学生的认知规律。在练习中,学生兴趣盎然,达到了预期的效果。
不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几本书?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几本书放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。
3、《鸽巢问题》教学反思
本节课是通过几个直观例子,借助实际操作,引导学生探究“鸽巢原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
1、借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
回顾整节课我觉得主要存在两个问题:
1、在学生体验数学知识的产生过程中,我始终担心学生不理解,不敢大胆放手,总是牵着学生的思路走。
2、这部分内容属于思维训练的内容,应该让学生多说理,让学生在说理的过程中真正理解体会“鸽巢问题”中的“总有”和“至少”的真正含义,并能灵活运用所学知识解答一些变式练习。
4、《鸽巢问题》教学反思
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。借机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与。
5、《鸽巢问题》的教学反思
一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。
一、情境导入,初步感知
兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。
二、教学时以学生为主体,以学定教
由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的`同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。
三、通过练习,解释应用
四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。
不足:
1、学生们语言表达能力还有待提高。
2、课堂中教师与速较快。
6、《鸽巢问题》的教学反思
“鸽巢问题”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“鸽巢问题”还存在着一定的难度。通过课堂教学,感受颇深。我的设计思路是这样的:
1.创设情境.从学生熟悉的游戏开始激发兴趣, 兴趣是最好的老师。课前“你坐我猜”的小游戏,简单却能真实的反映“鸽巢问题”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。另外通过游戏中学生的疑问,自然解决对“总有”和“至少”两个词的理解。
2.建立模型.本节课内容较难理解,所以根据小学生爱动手特点充分放手,让学生自主思考,化抽象为具体。 恰当引导,教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,发现并描述、理解了最简单的“鸽巢问题”。 使学生明白我们今天研究所用的杯子相当于鸽巢,小棒相当于鸽子。生活中的很多问题都是以小棒和杯子为模型解决的。
3.在活动中引导学生感受数学的魅力。注意渗透数学和生活的联系,并在游戏中深化知识。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了鸽巢问题的知识,同时锻炼了学生的思维。学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。练习中设计了一组简单、真实的.生活情境:“让一名学生在一副去掉了大小王的扑克牌中,任意抽取五张,问题1:总有几张牌的花色相同?”通过探究学生使明白本题中牌的花色就相当于抽屉数,抽出的5张相当于物体数;问题2:如果随意摸出14张,会有几张牌的点数相同?由于前面铺垫扎实,学生说不用抽就轻松解决了;为了拓展学生的思维,深化所学知识,顺势抛出这样的开放问题3:若从中抽出15张牌,你能确定什么?为什么?让学生不仅需考虑扑克牌的花色,还要顾及牌的点数,这种深入挖掘教材的教法,有效拓宽了知识应用的深度和广度。
但回顾整节课我觉得在同学体验数学知识的发生过程中,总觉得这部分知识学生理解有一定难度,所以每次摆一摆,议一议的小组合作环节留的时间较多。
另外,虽然这节课中我跟学生的互动也比以前有较大的进步,但对于一些学生的精彩回答,还是表扬激励的不够。
总之,课上完后,还是感觉有很多不足,也请大家多提宝贵意见。
7、《鸽巢问题》教学反思
“鸽巢问题”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“鸽巢问题”还存在着一定的难度。通过课堂教学,感受颇深。我的设计思路是这样的:
1.创设情境.从学生熟悉的游戏开始激发兴趣, 兴趣是最好的老师。课前“你坐我猜”的小游戏,简单却能真实的反映“鸽巢问题”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。另外通过游戏中学生的疑问,自然解决对“总有”和“至少”两个词的理解。
2.建立模型.本节课内容较难理解,所以根据小学生爱动手特点充分放手,让学生自主思考,化抽象为具体。 恰当引导,教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,发现并描述、理解了最简单的“鸽巢问题”。 使学生明白我们今天研究所用的杯子相当于鸽巢,小棒相当于鸽子。生活中的很多问题都是以小棒和杯子为模型解决的。
3.在活动中引导学生感受数学的魅力。注意渗透数学和生活的联系,并在游戏中深化知识。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了鸽巢问题的知识,同时锻炼了学生的思维。学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。练习中设计了一组简单、真实的生活情境:“让一名学生在一副去掉了大小王的'扑克牌中,任意抽取五张,问题1:总有几张牌的花色相同?”通过探究学生使明白本题中牌的花色就相当于抽屉数,抽出的5张相当于物体数;问题2:如果随意摸出14张,会有几张牌的点数相同?由于前面铺垫扎实,学生说不用抽就轻松解决了;为了拓展学生的思维,深化所学知识,顺势抛出这样的开放问题3:若从中抽出15张牌,你能确定什么?为什么?让学生不仅需考虑扑克牌的花色,还要顾及牌的点数,这种深入挖掘教材的教法,有效拓宽了知识应用的深度和广度。
但回顾整节课我觉得在同学体验数学知识的发生过程中,总觉得这部分知识学生理解有一定难度,所以每次摆一摆,议一议的小组合作环节留的时间较多。
另外,虽然这节课中我跟学生的互动也比以前有较大的进步,但对于一些学生的精彩回答,还是表扬激励的不够。
总之,课上完后,还是感觉有很多不足,也请大家多提宝贵意见。