教学反思

“交换律”教学实录与反思教学随笔

2023-06-30 15:32:13

  “交换律”教学实录与反思教学随笔

“交换律”教学实录与反思教学随笔

1、“交换律”教学实录与反思教学随笔

  一、情境引入。

  师:我们班有男生27人,女生31人,班上一共有多少人?

  生:27+31=58人

  师:我还有一种不一样的方法,你知道吗?

  生:我猜是:31+27=58人

  师:请你们观察一下这两个算式有什么共同点,什么不同?

  生:计算的都是总人数。

  生:两个加数都相同。

  生:和也相等。

  生:两个加数交换了位置。

  师:既然两道算式的和相等,27+31和31+27中间可以用什么符号连接?

  生:等号。

  生(惊喜地):是加(减)法的交换律。

  生:是加法的交换律。

  师板书:加(减)法的交换律。

  二、反复例证,充分感知交换律。

  师:你认为加法交换律是什么样子的?

  生:交换两个加数的位置,和不变。

  师:所有的加法算式都是这样吗?

  生:是的。

  师:口说无凭,你能举例子说明吗?

  师:你认为这样的例子多不多?

  生:很多,都举不完。

  师:你认为怎样举例最好?

  生:一组一组地写。

  生:你写的完吗?

  生:我举有代表性的例子。

  师:什么样的例子有代表性?

  生:一位数举一个,两位数举一个……

  生:还要考虑0的情况。

  生:再举几个和0有关的例子。

  生:我认为如果能找到了一个反例,就说明不是所有的加法算式都有加法交换律(加法交换律不成立),我准备找反例。

  生举例:9+8=8+9

  12+26=26+12

  ……

  0++=0+0

  0+7=7+0

  ……

  0.9+0=0+0.9

  师:这个例子和你们举的例子有点不一样。

  生:它的加数是0。

  生:上面几道算式的加数也是0。

  生:0.9是小数。

  师:同学们举得例子真不少,不仅想到了整数,还想到了小数,这些例子说明了什么?

  生:交换两个加数的位置和不变。

  师:有同学找到反例吗?

  生:找不到。

  生:减法不行,2-1不等于1-2。

  生:减法也有行的:2-2=2-2。

  生:只要有一个反例,就不行。

  师:交换律在减法中成立吗?

  生:不成立(师擦去减)

  生:乘法、除法行。

  师:真的吗?

  生:5*4=4*5

  生:也有不行的.(不成立)。

  师:现在请你们举例,认为行的就找行的,认为不行的就找反例。

  (因为有了加法的基础,学生举例的方法都不错)

  生:我认为行的:36*24=24*36

  生:我认为不行:25*24不等于24*25

  生:不对,

  师:请你们帮助解决一下。

  生:25*24=600,24*25=600

  生:我认为行:0*396=396*0

  生:我认为不行:25*4不等于5*24

  生:例子不对,是因数交换位置,又不是两个数交换位置。

  生:25*4=4*25

  生:不计算也可以知道他们的积相等,25*4表示4个25相加,4*25也可以表示4个25相加。

  师:真不错,她从乘法的意义来说明两个乘法算式的积相等。

  生:加法也是这样,虽然交换了两个加数的位置,但两个加数没有变,和也不会变。

  ……

  生:除法不行:6/3不等于3/6

  生:除法也有行的:8/8=8/8

  生:只要有一个不行,就不成立。

  师:通过刚才的举例,你认为交换律在哪些运算中成立?

  生:加法和乘法。

  师:你能完整地表述加法和乘法的交换律吗?

  生:交换两个加数的位置,和不变。

  生:交换两个因数的位置,和不变。

  师板书

  师:你觉得老师写这两句话,难不难写?

  生:难写。

  师:你能不能想一个简单的写法,帮帮我。

  生思考,并尝试写,有些小组小声地讨论起来。

  生:甲数+乙数=乙数+甲数

  生:苹果+香蕉=香蕉+苹果

  生:a+b=b+a

  ……

  紧接着,学生们也分别用文字、图形、字母表示了乘法交换律。

  师:这里的符号可以代表哪些数?比如a和b?

  生:代表0、1、2、3、4……

  生:代表1000、10000……

  生:代表任何数。

  师:你能完整地说一说加法和乘法交换律吗?

  生:交换任何两个加数的位置,和不变。

  生:交换任何两个因数的位置,和不变。

  生:可以合成一句话:交换任意两个加数(因数)的位置,和(积)不变。

  三、运用中升华认识。

  师:学习加法、乘法交换律有什么作用,过去我们用过吗?

  生:在二年级学过,看一幅图写两个加法算式。

  生:一句乘法口诀可以计算两道乘法算式。

  生:验算时用过。

  生:加法可以用交换两个加数的位置来验算,乘法也可以。

  紧接着,学生完成相应的练习。

2、加法交换律和结合律教学反思

  加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

  本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。纵观本课教学主要有以下几个特点:

  1、在复习引用中,巩固学生的思维基础。

  通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

  2、大胆猜想,自主探究,培养学生独立思考的能力。

  在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

  3、多层次的巩固练习,有效提升学生的思维。

  习题设计能有效促进学生思维的发展,本节课在习题设计中,一共设计了四个环节:①基本练习(填空)②变式练习(判断)③巩固练习(计算)④发展提高等。让学生通过练习巩固本课所学内容。

  在教学中也存在以下不足:

  1加法结合律学习在教学中所占比率应加大,学生在学习中还有疑虑,没有学透。

  2、整堂课在时间安排上有些前松后紧,在加法交换律上时间过长,练习的时间相应较短,显得后面在练习中有些仓促。

  3、教师的语言过于成人化,不适于中年级学生的年龄。

3、加法交换律和结合律教学反思

  义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

4、加法交换律和加法结合律教学反思

  一、导入部分

  上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。

  反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。

  二、探究规律

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。

  然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。

  反思:教师是教学的组织者和引导者,这样的'设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。

  总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。

  1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。

  2、对“关注每一位学生”这个问题,没有做到。

5、《加法交换律和乘法交换律》教学反思

  在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

  成功之处:

  1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

  2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的`方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

  不足之处:

  习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

  再教设计:

  1、注重习题的备课,减少低效教学流程。

  2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

6、“交换律”教学实录与反思教学随笔

  一、情境引入。

  师:我们班有男生27人,女生31人,班上一共有多少人?

  生:27+31=58人

  师:我还有一种不一样的方法,你知道吗?

  生:我猜是:31+27=58人

  师:请你们观察一下这两个算式有什么共同点,什么不同?

  生:计算的都是总人数。

  生:两个加数都相同。

  生:和也相等。

  生:两个加数交换了位置。

  师:既然两道算式的和相等,27+31和31+27中间可以用什么符号连接?

  生:等号。

  生(惊喜地):是加(减)法的交换律。

  生:是加法的交换律。

  师板书:加(减)法的交换律。

  二、反复例证,充分感知交换律。

  师:你认为加法交换律是什么样子的?

  生:交换两个加数的位置,和不变。

  师:所有的加法算式都是这样吗?

  生:是的。

  师:口说无凭,你能举例子说明吗?

  师:你认为这样的例子多不多?

  生:很多,都举不完。

  师:你认为怎样举例最好?

  生:一组一组地写。

  生:你写的完吗?

  生:我举有代表性的例子。

  师:什么样的例子有代表性?

  生:一位数举一个,两位数举一个……

  生:还要考虑0的情况。

  生:再举几个和0有关的例子。

  生:我认为如果能找到了一个反例,就说明不是所有的加法算式都有加法交换律(加法交换律不成立),我准备找反例。

  生举例:9+8=8+9

  12+26=26+12

  ……

  0++=0+0

  0+7=7+0

  ……

  0.9+0=0+0.9

  师:这个例子和你们举的例子有点不一样。

  生:它的加数是0。

  生:上面几道算式的加数也是0。

  生:0.9是小数。

  师:同学们举得例子真不少,不仅想到了整数,还想到了小数,这些例子说明了什么?

  生:交换两个加数的位置和不变。

  师:有同学找到反例吗?

  生:找不到。

  生:减法不行,2-1不等于1-2。

  生:减法也有行的:2-2=2-2。

  生:只要有一个反例,就不行。

  师:交换律在减法中成立吗?

  生:不成立(师擦去减)

  生:乘法、除法行。

  师:真的吗?

  生:5*4=4*5

  生:也有不行的.(不成立)。

  师:现在请你们举例,认为行的就找行的,认为不行的就找反例。

  (因为有了加法的基础,学生举例的方法都不错)

  生:我认为行的:36*24=24*36

  生:我认为不行:25*24不等于24*25

  生:不对,

  师:请你们帮助解决一下。

  生:25*24=600,24*25=600

  生:我认为行:0*396=396*0

  生:我认为不行:25*4不等于5*24

  生:例子不对,是因数交换位置,又不是两个数交换位置。

  生:25*4=4*25

  生:不计算也可以知道他们的积相等,25*4表示4个25相加,4*25也可以表示4个25相加。

  师:真不错,她从乘法的意义来说明两个乘法算式的积相等。

  生:加法也是这样,虽然交换了两个加数的位置,但两个加数没有变,和也不会变。

  ……

  生:除法不行:6/3不等于3/6

  生:除法也有行的:8/8=8/8

  生:只要有一个不行,就不成立。

  师:通过刚才的举例,你认为交换律在哪些运算中成立?

  生:加法和乘法。

  师:你能完整地表述加法和乘法的交换律吗?

  生:交换两个加数的位置,和不变。

  生:交换两个因数的位置,和不变。

  师板书

  师:你觉得老师写这两句话,难不难写?

  生:难写。

  师:你能不能想一个简单的写法,帮帮我。

  生思考,并尝试写,有些小组小声地讨论起来。

  生:甲数+乙数=乙数+甲数

  生:苹果+香蕉=香蕉+苹果

  生:a+b=b+a

  ……

  紧接着,学生们也分别用文字、图形、字母表示了乘法交换律。

  师:这里的符号可以代表哪些数?比如a和b?

  生:代表0、1、2、3、4……

  生:代表1000、10000……

  生:代表任何数。

  师:你能完整地说一说加法和乘法交换律吗?

  生:交换任何两个加数的位置,和不变。

  生:交换任何两个因数的位置,和不变。

  生:可以合成一句话:交换任意两个加数(因数)的位置,和(积)不变。

  三、运用中升华认识。

  师:学习加法、乘法交换律有什么作用,过去我们用过吗?

  生:在二年级学过,看一幅图写两个加法算式。

  生:一句乘法口诀可以计算两道乘法算式。

  生:验算时用过。

  生:加法可以用交换两个加数的位置来验算,乘法也可以。

  紧接着,学生完成相应的练习。

7、《加法交换律与加法结合律》教学反思

  这是实习老师讲的第一节课,课后我让她写了写本课的教学反思,教学就要在不断的反思中成长,下面是王雪飞老师的对加法运算定律的教学反思:

  这堂课是第三单元的第一堂课,也是自己实习以来讲的第一堂课。这一堂课让我在各方面对孩子们都有了一种全新的认识。

  首先,在课堂上,孩子们始终能够跟着老师的步伐,认真按照老师的`教学思路进行观察、分析、讨论与总结,并且得出的结果还是令人惊喜的。孩子跳脱的个性并没有因是实习老师讲课而过度展现,学习态度还是十分认真的。

  但是,认真的学习态度并没有完美体现在对待老师的提问上,部分孩子还是不太乐于通过举手回答问题来展现自己,整堂课举手回答问题的孩子基本上是固定的。当然,这除了与孩子自身性格相关外,也与老师的引导激励有关,在对孩子们们进行鼓励引导之后,举手情况还是会有所改善。

  再者,通过这堂课,我发现自己对孩子们发现力的认识是远远不够的,讲课时,发觉孩子们在课下对于这节课的内容是有预习的,但他们的思维并没有因此而被束缚,在主题引入环节根据已有条件提问题时,孩子们能够不拘泥于课本,提出自己的问题,在表达式的提出上,先不论正确与否,更是带有明显的独创性。而且,对于这种需要发散思维的问题孩子们明显兴趣更加浓厚。

  当然,这节课也存在不少问题,在时间的把握上就并不是十分到位,虽然完成了教学任务,但明显前松后紧,时间没有用在关键。对于孩子们思维的灵活性有些招架吃力。而且,自己对于教案的掌握也并没有达到驾轻就熟的程度,对课堂氛围的带动也明显不足。总之,虽说这堂课总体感觉不至太差但与预想还是有差距的。

  王雪飞老师是一个非常认真的实习老师,讲课很大方,面带微笑,但是毕竟是第一次讲课,教案不熟,重难点把握的不好,所以时间分配有些前松后紧。现在的孩子很聪明,发散思维能力比较强,所以老师有些招架不住,也出现了一些知识上的小问题,毕竟她对小学数学课本的知识系统不是很了解,出现点问题也属于正常想象。

8、《乘法交换律与结合律》教学反思

  教学内容:

  第61至62页例题,试一试,想想做做的第1至5题。

  教学目标:

  1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能用这两个运算律进行一些简便运算。

  2、在学习新知识的过程中,培养学生新旧知识间的迁移能力,在解决问题的过程中,培养学生灵活选择和应用乘法交换律和乘法结合律的能力。

  3、培养学生积极交流、认真倾听的习惯。

  教学重点:

  理解并掌握乘法交换律和乘法结合律并能用这两个运算律进行一些简便运算。

  教学难点:

  灵活应用乘法交换律和乘法结合律,正确计算。

  教学过程:

  一、复习旧知:

  你们学习了哪些运算定律?你会用字母表示加法的交换律和结合律吗?在乘法中有这样的定律吗?你认为乘法是否也有类似的运算律?能不能也帮乘法的这些运算律取个名字?

  学生猜测,取名字。(板书其中的`一些猜测)

  二、举例验证:

  你能否找一些实际例子来证明你的观点?

  (可以用数字举例,也可以用生活中的例子。)

  那找一个例子说明刚才的结论错误的呢?

  你们找到反而的例子了吗?你们没找到,老师也没找到,那么我们到书上找找答案。

  三:自学课本:

  自学书本第61.、62页。

  说说你们自学后有什么想说的吗?

  等式怎么填?

  这样填的依据是什么?

  在乘法结合律中,等号两边的算式,有什么相同和不同?

  你能不能用一句两句话概括一下乘法结合律和乘法交换律?

  试一试。

  (学生自己练习,请两个学生板演)

  四、巩固练习:

  1、想想做做第1题。

  学生在书上填空,思考各题分别用了什么规律。

  集体交流。

  2、想想做做第2题。

  算一算。

  比一比,每组中哪道算式的计算算得快,为什么?

  3、想想做做第3题。

  4、想想做做第5题。

  用不同算式求出苹果

  和梨各有多少千克。

  学生自己练习,指名板演。

  集体交流。

  五、全课小结:

  这节课你有什么收获?

  六、课堂作业:

  第62想想做做的第4题。

  反思:

  作为一节探索数学的规律课,对于乘法交换律与结合律的教学,不应仅仅满足于学生理解、掌握乘法交换律与结合律,会运用乘法交换律与结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学的重点,也是难点。

  本课让学生自己根据加法结合和交换律来寻找乘法运算定律,通过验证猜想得到并发现了乘法交换律与结合律,从教学素材的选择上充分体现了以“学生为主体”的课堂教学观,教师真正在教学设计中把探索权力放给了学生,学生列举算式例子空间很大,发现验证了这两个规律,体现了“以学生为本”充分尊重了学生个性,并积极引导学生展开探究,把思维的空间留给学生,教师基本上是学生探究知识的参谋与协助者,学生主体地位得到充分体现。同时也节省了教学时间,这样使我们的课堂教学更有效。

9、“交换”的力量一课二研反思实录教学

  “你有一个苹果,我有一个苹果,彼此交换一下,我们仍然是各有一个苹果;但你有一种思想,我有一种思想,彼此交换,我们就有了两种思想,甚至更多。”我很欣赏萧伯纳的这句名言警句,这也是一课二研活动给我的真实感悟……

  “交换”的力量在选题研课中孕育

  本次一课二研活动,我和张老师列为了一组,这使初步的选题研课有了交换思想的伙伴。我们彼此“交换”着自己的想法。一次我去逛书店,正好看到了有关棋类的游戏活动,心想,幼儿园不是正在进行“棋类游戏”的课题吗?我们正好可以设计有关棋类的活动,一是有进行尝试的愿望,二是“棋类活动”也是有一定的创新性的。

  商定之后,我们一起阅读棋书,从上面找出了几个比较有意思的活动,如“独列独行”、“使每行每列都为双数”等,就开始活动的设计了。我们觉得这个活动既有棋的特性,又有数学能力的提升,就把它简单地定位为一节综合活动,命名为《智慧棋社》。过程是以熊博士为主人公进行的链接,将一个个游戏进行贯穿。活动设计初步成型,我俩分工合作进行教具的制作,她负责制作课件,我负责制作幼儿使用的操作用具。虽然还不知道设计是不是合理,活动能不能成功,但我们已经初步品尝到了“交换”的甘甜。

  “交换”的力量在精心打磨中凸显

  一切准备就绪后,张老师进行了第一研。这个活动受到了孩子们的喜欢。孩子们沉浸其中,投入一个又一个的操作活动,乐此不疲。但从一节好课的角度看,这节课还是反映出了很多问题。活动后,评课组老师的真知灼见,让我们真正领略到了“交换”的力量。我们认真听取了老师们的建议,如活动时间过长、幼儿操作的错误率比较高、怎样解决这个问题等。而问题的焦点主要还是集中在了这节课的定位上。老师们一致认为这节课虽然使用的是棋子和棋谱,但不是真正意义上的棋课,而应该定位为一节锻炼孩子逻辑思维的数学活动。作为一节数学活动,活动的内容又缺乏递进性,建议把一些花俏的过渡性环节和没有相对联系的第二个游戏去掉,采用“独行独列”游戏进行重新设计。“独行独列”游戏给了我们一点提示,可以关注一下当前比较热门的数独游戏。

  通过这次“思想交换”,我们认识到一节好课的诞生,不是草率的、不是简单的,而是要经过反复推敲、精心打磨,定领域、定目标、定环节都要进行反复地斟酌。而环节的设计上,更是要体现递进性,抓住一个点,深挖下去,由易到难、由简到繁地突出活动的重难点,通过一个个的策略解决重难点,从而达成活动的目标。

  “交换”的力量在修改重塑中收获

  针对老师们提出的建议,我对活动进行了重新设计。领域定位在数学,目标定位在提高幼儿的逻辑思维能力,形式采用了由“独列独行”游戏而想到的“数独”游戏。我巧妙地利用了数独游戏的原理,适当降低难度。活动用的宫格由原来包含9个宫格的大宫格改为最基础的3×3到4×4格,填入格子的数字从一个动物到多个动物再转换到数字,活动形式从探索发现规律到填满数字空缺,材料的提供和学习步骤上都按照循序渐进的方式,由浅入深,由易到难,逐步让幼儿在探索中了解规则,在探索中提高思维。

  活动结束后,我进行了反思,觉得收获还是挺大的:

  首先,活动展现了一定的独特性和创新性。提高大班幼儿的逻辑思维能力本来就是大班数学的一个重要目标。本次活动巧妙地利用了当前最热门的数独游戏的游戏原理,对游戏进行了适当简化,让幼儿在循序渐进的活动环节中了解数独游戏的规则,从而在填满数字空缺的游戏中锻炼和提高了自身的逻辑思维能力。

  其次,活动充满了游戏性和趣味性。活动一开始,老师没有采用数字的形式,而是让小动物在九宫格里做游戏,使每一行每一列都为不重复的小动物。这是本次活动的难点。由于是和小动物做游戏,幼儿的'兴趣很浓厚,很快就厘清了思路,突破了难点。幼儿也在帮助小动物找独行独列的位置中,初步理解了游戏的规则,为用数字开展游戏做好了准备。

  第三,活动体现了层次性和操作性。纵观整个活动,从一开始的帮助一个小动物找独行独列的位置,到帮助另外两个动物找到独行独列的位置,发现每一行到每一列都为不重复的三个动物的规律,再由动物转化为数字引出数独游戏,最后根据每一行每一列都为不重复的数字的要求,给宫格填满空缺。

  第四,活动充分践行了幼儿在行动中学习的理念。活动中,幼儿始终是学习的主人,从幼儿感兴趣的形式入手,让幼儿在合作操作中学习,幼儿的情绪始终处于积极状态,充分感受到了学习数学的乐趣。

  当然,活动也有不足的地方,如幼儿的操作材料相对单一,填入的形式还可以丰富一些等。我想,在老师们提出建议后,再进行第三研的话,那一定会有更大的收获。

  “交换”是一个合作的过程,“交换”是一个思维碰撞的过程,“交换”是一个共同提高的过程。非常喜欢这样的一课二研形式,它让我着实感受到了“交换”的力量!

相关文章

推荐文章