《乘法分配律的应用》教学反思
1、《乘法分配律的应用》教学反思
作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思能很快的发现自己的讲课缺点,那么写教学反思需要注意哪些问题呢?以下是小编帮大家整理的《乘法分配律》与《乘法结合律》对比教学反思,欢迎阅读,希望大家能够喜欢。
1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。
乘法分配率的结构特点,即两数的'和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。
2、《乘法分配律》与《乘法结合律》对比教学反思
作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思能很快的发现自己的讲课缺点,那么写教学反思需要注意哪些问题呢?以下是小编帮大家整理的《乘法分配律》与《乘法结合律》对比教学反思,欢迎阅读,希望大家能够喜欢。
1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。
乘法分配率的结构特点,即两数的'和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。
3、《乘法分配律》的教学反思
今年我“高升”了!从毕业开始,一直在一二年级的数学徘徊,今年“高升”到了四年级!得到消息后,先是兴奋,再是忐忑。兴奋的是终于能教大孩子了。忐忑的是能教了这些大孩子吗?于是每天像是刚工作时一样,每天手写备课、拎着凳子去听师傅的每一节课,不敢有丝毫怠慢。更忐忑的是接到通知,于老师要来听课,其中有我!于是马上请教我的师傅车老师,车老师认为《乘法分配律》是一节数学味很浓的课,而且是一节特别值得研究的课,于是决定讲这节课。经过初步备课,我发现乘法分配律的运用属于运算律中最有难度的部分,而且类型颇多,每一种都能让学生琢磨半天,这让我感觉这节课确实很有意思,也很有挑战。
因为从来没有执教过高年级,我决定先“拜访”名师。于是我上网搜视频,设计。当我看到葛丽霞老师的视频,我被惊艳了!课堂中的每个环节都让我感觉眼前一亮,几个精彩瞬间如“乘法分配律的探索过程、用字母表示法还有课的小结……”仍记忆犹新,于是我决定就模仿葛丽霞老师的这节课。视频看了三遍,教案看了无数遍。于是就“拿来”了这节课。
可是经过于老师的指导,我发现,我模仿的是教案的话,每一句话后面深意,每一句话的目的`,我真的明白了吗?备课,备了教案,备了老师,却把最重要的要素——学生,忘记了。没有找到学生的认知起点,没有探索到学生的易错点,难点。后来,与我的师傅车老师一起研究,对教案进行了重建,重建教案主要有以下几个改进:
1、形意结合。
初次教学乘法分配律时,由于对教材的挖掘比较肤浅,在教学中,只是重视了对“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”这句话的理解,学生对乘法分配律的印象完全停留在外形上,根本不知道为什么要用括号里的每个加数分别与括号外的数相乘,结果他们在应用时,只会按照总结出的规律生搬硬套,全班竟有一半的人出现了问题;当课堂进行到乘法分配律的逆运用时,很多学生更是不知道该从何入手,课堂效果特差。于是,重建教案中,在引导学生发现规律时,不仅注意了等式两边的“外形”结构特点,即“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”,而且重视了对规律的本质--乘法意义的理解。借此机会我再次打开教学参考,进行了细细地研读。“对12×105简算时,要将105想成100与5的和。先求100个12是多少,再求5个12是多少,合起来就是105个12是多少。”是呀,在引导学生发现规律时,我只注意了等式两边的“外形”结构特点,却缺乏对规律的本质--乘法意义的理解。
2、讲解到位,注重知识点的前后联系
初建教案时,最后环节设计了展示二年级两位数乘一位数,以及三年级两位数乘两位数的电子课本,其目的是将前后的知识点加以联系。我的课堂设计也延续了这一亮点,可是我只是自顾自的讲解了一番,孩子根本不知所云!
起初我的感觉是这一环节主要是考虑优等生的提升,所以在讲解时也只是匆匆了事!但是,课后我觉得应该让孩子明白回顾这一环节的内容,在出示乘法情境图的时候可以采用课件展示的方式,出示23×(10+2)=23×10+23×2这一算式。为了让学生更好地理解以前运用过乘法分配律,还可出示长方形的周长公式(a+b)×2=a×2+b×2,唯有此,才能够将前后知识点联系起来,水到渠成。
新航程的号角已经吹响,我想我应该以此次讲课为契机,适应数学教学的变化,向名师课堂学习,从“拿来”到“思考”,关注学生,让数学回归本质,尽自己最大的努力让每一个孩子学到有价值的数学!
4、《乘法分配律的应用》教学反思
这节课是在学生学习乘法分配律基础上进行教学的。在第一课时学生对于乘法分配律的意义已经有了初步的理解,对于乘法分配律的结构也有了一定的认识,能初步利用乘法分配律进行简便计算。本课内容的'教学重点是灵活根据题型应用乘法分配律进行简便计算。
成功之处:
1.课始通过复习乘法分配律的意义,以及应用乘法分配律进行填空的练习,让学生进一步熟悉乘法分配律的结构及特点,加深对乘法分配律意义的理解。
2.分类型进行练习。采用边讲边练相结合的方法,让学生通过专项练习进一步巩固每一类型题目。共分为四类:第一类是a×(b+c);
第二类是a×b+a×c;第三类是a×b+a;第四类是接近整十整百的数乘一个数。整体教学就是稳扎稳打,一步一个脚印,让所有学生都能掌握其中的变式练习,然后再进行综合训练,让学生灵活解决问题。
不足之处:
1.由于分类型讲解练习,导致时间分配不足,个别题型没有足够的时间进行练习。
2.学生的注意力集中不够,导致个别学生对某一类型的题目没有掌握。
再教设计:
1.加强小组合作的学习,能自己解决的问题,就自己解决,能小组解决的问题,就小组解决,充分发挥小组组际间的交流,留给学生更多的时间和空间,发挥学生主体作用。
2.抓住易出错类型题,重点讲解,重点训练。
5、《乘法分配律》的教学反思
《乘法分配律》一直是四则运算定律的一个难点,学生最容易出错。比如38与99相乘,就容易出现“只把38与100相乘后再减1”的错误。还有的学生在计算125×48时,会出现“125×(6×8)=125×6+125×8“这样的错误。究其原因,还是未能真正理解乘法的含义和乘法的运算定律。
在教学中,我也想了很多办法来解决这些问题,比如让学生背乘法分配律的含义,经常让学生做点这样的易错题。可发现效果不是很明显,尤其是有几个孩子,一会就忘记了。后来,我想:还是必须从理解乘法的'意义中去学会乘法分配律。于是,我就在辅导这几名学生时,要求他们说出每一个算式表示的含义,再说一说自己做错的算式的含义,从而在对比中来发现、理解自己的错误,明白了自己错误的原因后,再来思考正确的解题思路,经过几次这样的训练,效果好多了。
6、《乘法分配律》的教学反思
乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律和结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算 。
成功之处:
1.本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(28+12)×44=28×44+12×44。
2.加深对乘法分配律意义的`理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。通过多种形式的练习让学生深入理解乘法分配律的意义。
不足之处:
1.在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。
2.学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。