《用乘除法两步计算解决问题》教学反思
1、《用乘除法两步计算解决问题》教学反思
乘除法两步计算解决问题是二年级下学期的重点也是一个难点,所以学生学习起来比较困难,在本册的第二单元和第四单元都涉及到了这方面的内容,我认为解决这一类型的应用题,首先要让学生通过认真读题后明白里面告了一些什么条件,紧接着学生根据已有的信息和问题理清所告条件之间的关系,这一步做好学生解决起来就容易多了,然后学生确定第一步先计算什么,这时必须让学生说清楚第一步求的是什么,只有这样在写单位的时候就不会出错了,最后第二步就解决了人家的问题了。这些对于我大人来说看起来很容易,可是对于一个二年级的'学生就不是那么简单了,下面就是我在教了这部分内容后出现的一些问题:
一、学生存在一个最大的问题就是不能认真的审题,所以往往导致解题错误,针对这一情况我就利用课堂的时间,放慢讲解的速度,每道题都要求学生读两次,再找到相关的问题,根据问题想想需要那些信息,看看人家告了些什么条件,还缺什么条件,缺来的那个条件就是自己要求的第一步,这样一段时间下来学生有所改观,对于一些极个别的学生做到稍稍一惩罚就做得很好,所以对于二年级的学生教师要把握好尺寸,才能更好的驾驭学生。
二、其次学生存在的问题就是第一步算出来不明白写什么单位,比如王老师买7元一枝的钢笔花了63元,那么买5枝要花多少钱?学生知道第一步是63÷7=9(枝),而一部分学生却只看问题里的单位所以经常写成了“元”,针对这一问题我要求学生说出自己第一步所求的问题,这样学生就明白什么单位了,就如上例学生只要说出第一步是求:每支钢笔需要多少钱?就知道应该写“元”了。
三、最后就是大部分只能列分步算式,在列综合算式的时候就不是那么得心应手了,尤其是有了()的就往往丢了(),比如妈妈用100元买一件46元的上衣,和一条29元的裤子,应找回多少?学生分步是45+29=74元,100-74=26元,在写综合算式时就写成了100-45+29=26元,这是他忘了应该先算加法要加()了,不过这对于二年级的学生不必做硬性要求,所以我只是随时提醒学生应注意,或者就用分步。
总之这部分的内容很广泛,但只要让学生掌握了其中的道理,举一反三就容易多了,教会学生学习的方法比什么都重要。
2、《用两步连乘解决实际问题》教学反思
这部分内容是学生首次接触条件多于两个的解决问题,与其它两步计算的实际问题相比,此类实际问题中的已知条件往往更便于进行不同的组合,因而解决问题的方法也就更灵活,让学生上新课前,学生借助学习指导充分感知了用两步连乘解决实际问题。从旧知引新知,让学生从两个一步应用题合成两步解答应用题。接着请学生根据题目的信息思考:要求买6袋乒乓球要用多少元?第一步先求什么?第二步再求什么?要求学生独立思考,再同桌交流,最后全班交流,学生积极性很高,而且有利于学生对不同解法的理解。使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。
教材里两种解法都采用综合法思路引导学生分析推理。第一种解法是引导学生根据每个乒乓球2元,一袋5个乒乓球的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式解答。第二种解法是先引导学生根据一袋有5个乒乓球,有6袋乒乓球的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式解答。
让学生分步列式的思路来分析数量关系,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。
3、《用两步连乘解决实际问题》教学反思
此课内容是两步计算解决实际问题中的一个难点,它只有两个已知条件,两个量之间有倍数关系(习题中也出现出现了相差关系),数量关系较抽象,学生理解有一定难度。教材要求引导学生借助线段图分析数量关系,解决问题。本课遵循学生的思维特点,结合教学要求,力求从以下三方面来突破这个难点。
一、创设问题情境。
教材安排了解决一套衣服价钱的问题,引导学生质疑,从而明确解决问题要找相关条件,渗透解决问题基本思路的训练。
二、探索解答方法。
让学生借助直观的线段图,理清数量关系,是学会用两步计算解决实际问题的.重要策略。在教学过程中,注意指导学生学习线段图的画法,体会线段图表示数量关系的合理性,重视借助线段图理清解题思路;接着放手让学生独立解决问题,倡导解决问题方法的多样化;最后注重回顾与反思,引导学生从整体上把握此类问题数量关系的特点以及解题方法的联系和区别,从而逐步掌握方法。
三、重视识图能力、解题思路训练。
“想想做做”的第1、2题是看图列式计算,练习时首先安排看线段图说条件、问题及思路的针对性练习,再通过选择有效信息解决问题,不仅巩固了例题中学习的基本解题方法和策略,而且让学生积累解决实际问题的经验,提高解决实际问题的能力,这两道习题中说问题的环节比较重要,因为学生习惯算了第二条线段的长度就认为是两条线段的总和了。
课堂中出现的问题是:
1.线段图是第一次在教学中出现,学生在认知上由直观具体的“图”文,向较为抽象的“线段”过渡是一次,将重点放在画线段图的方法指导上是必要的,也是有效的。教师先亲自示范画图,再让学生尝试画图,使学生充分感知,能很好完成形象思维向抽象思维的过渡。
2.算法的实际生成情况。学生还是先想到算上衣的价钱,然后加上裤子的价钱。在我的追问下,我还是向学生“讨”到了第二种方法。联系线段图,学生对1+3=4的解释也比较到位。
4、《用分数乘除法解决问题》的教学反思
一、教材的处理
按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。
二、运用了体验式教学模式。
启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。
体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。
总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。
应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。
(2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。
三、关注解决问题的方法指导
这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的'关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。
四、不足之处
在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。
总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。
5、《两步连乘计算解决简单的实际问题》的教学反思
本课主要教学两步连乘计算解决简单的实际问题,两步连乘的实际问题要求学生利用已知条件进行不同组合,不仅需要学生去搜集信息,更要学生去选择信息,去分析信息,找到有关联的信息,从而确定可以先求出什么,再去求什么。找到解决问题的不同策略。
教材一开始以现实情境呈现问题,学生根据“6袋乒乓球”、“每袋5个”、“乒乓球每个2元”,提出问题“买6袋乒乓球一共多少元”。然后让学生思考这个问题你打算怎么解决。在讨论中学生发表不同的看法,有的说可以根据“有6袋乒乓球”和“每袋5个”,先算出一共有多少个乒乓球;还有的说可以根据“乒乓球每个2元”和“每袋5个”,先算出每袋乒乓球多少元。鼓励学生在认真分析数量关系的基础上,探索不同的解题思路,进而体会解决问题策略的多样性。在此基础上,再要求学生根据自己的思路列式解答,并反馈。最后再对两种方法进行比较,找出两种方法的异同。由于本课的重点是让学生从不同的角度分析问题,进而解决问题,因此对于计算的结果我并不是很看重,在学生回答问题的过程中,我重点关注他们能否将自己的思路表达清楚。
在回顾解题过程时,让学生谈谈自己的'体会,说说对两步连乘实际问题的一些感受,自主归纳方法。
在后面的练习中,也是重点要求学生找出有联系的条件,说说可以先算出什么,怎样算。一共可以找出几种不同的方法。另外,在反馈时,要求学生说出每个算式的含义,如果说不出实际含义,那那个算式就没有实际意义。在一系列题目的训练下,学生的语言表达能力已经有了提升,能够清晰表达自己的思路,在说的过程中,也能发现存在的问题,课堂氛围活跃。通过练习,进一步丰富了学生对从条件出发思考的策略的体验,体会了同一个问题可以有不同的解决办法。
6、《用乘除法两步计算解决问题》的教学反思
用乘法和除法两步计算解决问题,这部分知识学生第一次接触,对于学生来说,是比较难的,存在一定的难度.要解决这个问题,我们必须先解决一个中间问题,而对于要先解决的这个中间问题,很多学生根本不清楚自己要先知道什么?在备课过程中我把分析、解决问题定为此节课的难点。在上这节课内容的时候,先给学生一个铺垫,提醒他们"你会解决这个问题吗?你觉得你还要知道什么数据信息?"这样一来,学生就会去想我还想知道什么条件才能解决问题,帮助学生掌握解决这样的问题的步骤.
在教学探究新知(例4的教学)的部分,我让学生思考:怎样帮助朋友解决"买5辆小汽车需要多少钱?"这个问题,你觉得还要知道什么条件才能算出来呢?从而帮助学生去思考要解决这个问题我还得知道什么,使学生理清解决这个问题的步骤.在主题图呈现的顺序上,我考虑了很多种呈现方式,先出示整副图;还是先出示问题,再出示条件。最终我决定先出示问题,先让学生思考现在能不能解决这个问题,抛出问题,引发学生思维冲突。然后我再补充出示条件。问学生现在你们能帮他解决了吗?这个问题你是怎么想的?之后让学生思考和以前的题目有什么区别(需要两步来计算),为什么?因为其中一个信息没有直接告诉我们,需要我们自己列算式去计算.但在让学生尝试解决问题的过程中,没有提出要整体观看整幅图所给出的条件的要求,从而使得学生在经历联系整幅图、理解题意的过程中没有注重审题。
在教学做一做及练习的时候让学生说了说,要解决题目提出的这个问题需要先解决哪个问题,然后再动笔计算,建构学生解决这样的问题的方法。由于做一做的类型和例题的类型有些不大一样,导致学生在刚学了新知转到做一做的变题练习时,有些措手不及,如果我能够在上了例题之后,先将书后的第一题(和例题题型一致)给孩子练习,效果应该会更好!尤其对一些后进生,才不至于产生混乱。在整个练习中,由于我在备这节课时把重点摆在让学生会分析题目上,忽视了对学生审题能力的培养,整堂课都没有让学生自己审题,都一直扶着学生做。这点导致了学生在自己做练习时也忽视审题,找不到题目中的已给出的条件。所以他们自己做题时就无从下手。可见认真审题是解决问题的关键。应该要给孩子安静的'思考时间和分析问题的时间。在指导学生练习时,应该注重培养学生整体看图、读图的审题习惯,独立思考、自主分析数量关系的习惯。
这节课讲下来,我认为值得我在以后的教学中多加思考以及需要改进的的问题:
1、教学中应该如何把握扶、放的度 。对于学生,我总是不放心让他们自己独立解决问题,习惯把题目中的难点告诉他们,引起他们的注意,避免出错。但这样一来,学生就失去了独立思考、解决问题的过程。从知识能力角度,学生没有真正的锻炼自己的解题能力。从学生内在需求的角度,低年级学生由于年龄特点,他们需要在学习中通过被肯定来建立学习数学的信心,感受数学的快乐,从而喜欢学数学,成为学习的主人。而这堂课没有使他们建立起自己独立解出题目的信心,学生没有体验到学习数学的快乐。
2、课堂中应该充分暴露学生的思维过程,注重呈现学生的错例分析,让学生说一说为什么会这样做,理由是什么?让学生通过思考、讨论、交流等形式,找出错误原因,以及各种解决问题的方法。为学生提供选择的空间,引发主体探究意识,培养学生发现问题、分析问题和解决问题的能力。让学生真正成为学习的主人。
在我这几个月的教学生活中深深地体验到作一名好教师太不容易了,我需要学习和改进的地方还有很多,但我有信心、不畏惧,每天、每节课都要超越自己,追求完美。
7、《分数乘除法解决问题》教学反思
最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:
1、一找、二看、三判断
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。
2、弄清对应量、对应分数、单位‘1
教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1 ”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的.关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
3、线段图、数量关系、关系转化
(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。
(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。
8、《用乘除法两步计算解决问题》教学反思
乘除法两步计算解决问题是二年级下学期的重点也是一个难点,所以学生学习起来比较困难,在本册的第二单元和第四单元都涉及到了这方面的内容,我认为解决这一类型的应用题,首先要让学生通过认真读题后明白里面告了一些什么条件,紧接着学生根据已有的信息和问题理清所告条件之间的关系,这一步做好学生解决起来就容易多了,然后学生确定第一步先计算什么,这时必须让学生说清楚第一步求的是什么,只有这样在写单位的时候就不会出错了,最后第二步就解决了人家的问题了。这些对于我大人来说看起来很容易,可是对于一个二年级的'学生就不是那么简单了,下面就是我在教了这部分内容后出现的一些问题:
一、学生存在一个最大的问题就是不能认真的审题,所以往往导致解题错误,针对这一情况我就利用课堂的时间,放慢讲解的速度,每道题都要求学生读两次,再找到相关的问题,根据问题想想需要那些信息,看看人家告了些什么条件,还缺什么条件,缺来的那个条件就是自己要求的第一步,这样一段时间下来学生有所改观,对于一些极个别的学生做到稍稍一惩罚就做得很好,所以对于二年级的学生教师要把握好尺寸,才能更好的驾驭学生。
二、其次学生存在的问题就是第一步算出来不明白写什么单位,比如王老师买7元一枝的钢笔花了63元,那么买5枝要花多少钱?学生知道第一步是63÷7=9(枝),而一部分学生却只看问题里的单位所以经常写成了“元”,针对这一问题我要求学生说出自己第一步所求的问题,这样学生就明白什么单位了,就如上例学生只要说出第一步是求:每支钢笔需要多少钱?就知道应该写“元”了。
三、最后就是大部分只能列分步算式,在列综合算式的时候就不是那么得心应手了,尤其是有了()的就往往丢了(),比如妈妈用100元买一件46元的上衣,和一条29元的裤子,应找回多少?学生分步是45+29=74元,100-74=26元,在写综合算式时就写成了100-45+29=26元,这是他忘了应该先算加法要加()了,不过这对于二年级的学生不必做硬性要求,所以我只是随时提醒学生应注意,或者就用分步。
总之这部分的内容很广泛,但只要让学生掌握了其中的道理,举一反三就容易多了,教会学生学习的方法比什么都重要。
9、《乘加乘减的两步计算实际问题》的教学反思
上周学习《乘加乘减的两步计算实际问题》,课的开始,我出示书上82页情境图,出示情境图后,我并没有直接出示书上例例题中的问题:两只猴一共采了多少个?而是让孩子们看图,看着大猴的条件,说说知道什么,能求出什么;然后再完整地看情境图,让他们又说说,现在能提出什么问题了。
宇说,大猴采了多少个?
冉说,两只猴子一共采了多少个?
桐说,大猴比小猴多采多少个?小猴比大猴少采多少个?
璐说,大猴采的个数是小猴的多少倍?
宇的第一个问题孩子们都能正确列式解答,第二个问题两只猴一共采了多少个?多数学生说应该先求出大猴采的'个数。我追问,你是怎么想到要先算大猴采多少个的?
学生先小组交流,集体交流的时候,我把他们的方法归为从问题想起,和从条件想起,并注重了表达,一节课下来,估计有小部分孩子,能清晰大胆表达;一半的孩子,有自信表达自己的思路,另一半孩子模糊的懂,但不是很会表达,需要同学帮着一起说,小部分孩子可能会做,但是思路不清晰。
一节课下来,通过学生对题目的解答,我想,从问题想起还是从条件想起,其实并不重要,重要的是孩子能理解并做出来。但又想想,如果不让学生表达,到了高年级解决问题时又不能具体分析,只注重解题结果肯定不行。
课本83页“想想做做”第2题“有4行树苗,每行14棵,已经浇了38棵,还有多少棵没有浇?”,生读完题后,我没有先讲而是让学生自己独立完成。交流时发现,好多学生在学完例题乘加的基础上,想都没想直接列了一道乘加算式。
课中我发现,学生对于乘加做起来比较顺手,因为乘加算式在图中能直接看到两个部份,对学生来说是真实存在。可乘减算式中减法那部份则是一种虚拟存在的,对于二年级孩子来说,如果凭空让他们列出算式容易出错,因此对有困难的学生,我教给他们:1、画。把最后一份也画的和前面的同样多。2、数。数一数现在有几个几。列乘法算式。3、划。把刚画上去的划去即减去。这样,学生对于乘减就比之前容易些了。
10、《分数乘除法解决问题》的教学反思
(看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的'思维能不能得到提高?让我们共同讨论~于华静)
最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:
1、一找、二看、三判断
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。
2、弄清对应量、对应分数、单位‘1
教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1 ”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
3、线段图、数量关系、关系转化
(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。
(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多
加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。