教学反思

九年级数学上册《实际问题与一元二次方程》教学反思

2023-10-09 16:44:26

  九年级数学上册《实际问题与一元二次方程》教学反思

九年级数学上册《实际问题与一元二次方程》教学反思

1、九年级数学上册《实际问题与一元二次方程》教学反思

  问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

  1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

  (学生很自然列方程解决)

  改换题目条件和问题:

  2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

  分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

  于是学生很容易完成下列求解。

  解:设该商品定价为x元时,可获得利润为y元

  依题意得:y=(x-40)?〔300-10(x-60)〕

  =-10x2+1300x-36000

  =-10(x-65)2+6250300-10(x-60)≥0

  当x=65时,函数有最大值。得x≤90

  (40≤x≤90)

  即该商品定价65元时,可获得最大利润。

  增加难度,即原例题

  3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的`结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

2、九年级数学上册《实际问题与一元二次方程》教学反思

  问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

  1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

  (学生很自然列方程解决)

  改换题目条件和问题:

  2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

  分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

  于是学生很容易完成下列求解。

  解:设该商品定价为x元时,可获得利润为y元

  依题意得:y=(x-40)?〔300-10(x-60)〕

  =-10x2+1300x-36000

  =-10(x-65)2+6250300-10(x-60)≥0

  当x=65时,函数有最大值。得x≤90

  (40≤x≤90)

  即该商品定价65元时,可获得最大利润。

  增加难度,即原例题

  3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的`结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

3、七年级数学上册《一元二次方程》教学反思

  随着新课改的深入,课堂评价变得多元化,似乎很难找到一条适合任何课堂的衡量标准,这是否就是“教无定法”的理解,自己很困惑。(多以问题呈现):

  1、传统教学的边讲边练与洋思中学的自学哪种效率高?洋思经验在洋思效率很高,但在我们这里却难以实现,甚至不如传统教学的边讲边练效果好,为什么呢?我记得去洋思时听到洋思中学的一位老师诚恳的说,你们来学洋思经验,只通过听一两节课是学不到的,因为这不仅仅是课堂教学的问题,还牵涉到学校的系统管理。还记得上海闸北八中的刘京海校长分析的传统教学与课程改革的优劣,尤其强调了传统教学的边讲边练在数学等理科方面的优势,也就是说如果我们能够就传统教学做深入的研究也一定能够出效果。

  2、如何解决课堂上的死角?如何分层设计让差生在每一节课上都有事做?分组学习,生教生应该是不错的一种方式,但是像我们初三的差生有的'到现在为止连有理数加减法都难以进行,那该如何兵教兵?这样岂不是对好学生很不公平,这样教学任务也很难完成,单从初三教材来说要想对每个内容进行分层设计恐怕对那些连有理数加减法都不会的学生来说很难找到适合他们的最低层次和小步子密台阶,困惑!

  3、如何对新教材做创新性的设计?不要视教材为权威,但我们作为新课改的第一实践者不以教材为纲,课改又如何展开呢?教材深一脚浅一脚的设计是为了突出我们都已经认可的螺旋式理念,我们也想在实践中尽可能的去实现,我们如果去做些创新也只能是按原来课程标准恢复原样,新课改又从何谈起?但是如果不对教材做调整,对于知识的难易程度如何把握好分寸,级部之间又如何衔接而不至于出现断层或重复?

  4、课堂上以学生发展的能力为重还是以双基为重?当然以发展学生能力为重。课改新理念是提醒我们注重培养学生的能力和情感价值观,但是双基打不好,又如何形成技能,发展能力?反过来说,现在这个课程安排就双基问题有时候也很难保障,那又如何有时间和精力去做拓展发展能力?很多理论说起来容易,做起来难。

4、九年级数学上册《解一元二次方程》教学反思

  学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的`形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。

  方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。

5、九年级数学实际问题与一元二次方程的教学反思

  用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的`自主思维能力、灵活的解题技能,所以也成了教学难点。

  如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?

  分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加X人,即(30+X)时人均旅游费用(800—10X)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”

  (2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。

  (3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。

  尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。

6、九年级数学上册《列一元二次方程解应用题》教学反思

  在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。

  本节内容教材提供了与生活密切相关,且有一定思考和探究性的问题,所以在教学中我让学生综合已有的知识,经过自主探索和合作交流尝试解决,提高学生的思维品质和进行探究学习的能力。主要有以下几个成功之处:

  1、让学生自主交流方法,充分展示学生不同层次的思维,互相学习,互相促进,从而创建平等、轻松的学习氛围。

  在出示了例7后,我提示学生解决此类问题可以自己画出草图,分析题目中的等量关系,学生根据题意很快可以画出图形,然后,我让他们找出题目中可以写等量关系的条件,根据条件写出文字的等量关系。在这个环节有的学生遇到了困难,于是,我就让他们互相讨论,通过讨论,大部分学生可以写出等量关系,我再让会的学生说出理由。在这个教学过程中,学生互相学习,互相促进,轻松地学会了知识。

  2、让学生自主归纳,总结方法,尊重学生的个性选择,学生的集体智慧更符合学生自己的口味,比教师说教更易于被学生接受。

  例7的解答还有一种更简单的方法,我让学生观察图形,在图形上做文章,还是让他们自主探索,讨论,很快有一部分学生想到了把图形中的道路平移到一边的方法,这样就把种植面积集中起来,方程就好列了。这时,我就让学生上来讲述方法。学生用自己的语言讲述,这样其他人接受起来更快一些。并且,学生还总结此类问题的解决方法——将图形平移,在以下练习的几道题中都能得心应手的解答了。由此可见,通过自己思考学到的知识能够灵活应用,且掌握的好。

  在这节课的`教学中也存在一些不足之处,教材中在例题之前设计了一个应用,在解决这个问题上耽误了时间,延误了下面的教学,导致设计的练习题没有做完,所以在下次教学时,这个应用问题只让学生列出方程即可,不必在解答上花费时间。另外,练习设计过于单一,只涉及到了例题这种类型的练习,变式练习题少,所以,在下次教学时,要设计两道不同题型的题目。

  由这节课的教学我领悟到,数学学习是学生自己建构数学知识的活动,学生应该主动探索知识的建构者,而不是模仿者,教学应促进学生主体的主动建构,离开了学生积极主动的学习,教师讲得再好,也会经常出现“教师讲完了,学生仍不会”的现象。所以,在以后的教学中,我要更有意识的多给学生自主探索、合作交流的机会,更加激发学生的学习积极性,使学生在他们的最近发展区发展。

7、九年级数学上册《公式法解一元二次方程》教学反思

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值

  2、验判别式是否大于等于0

  3、当判别式的数值符合条件,可以利用公式求根。

  在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:

  1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的.符号

  2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。

8、七年级数学上册《实际问题与一元一次方程》教学反思

  本周进行了实际问题与一元一次方程教学,球赛积分问题,尽管在课前与学生体会了一下赛事得分问题,但是在上课时学生仍感到茫然,农村孩子几乎与各类体育项目绝缘了,没有什么机会去接触篮球足球,各种规则仅仅就是从电视上了解,知道得不多,我让学生对问题进行讨论时,学生半天理不出头绪,头脑里难以呈现比赛场面,就更别提常用规则了,没办法,我只好先给学生描述了一下,简单介绍规则后,再引导学生结合本题进行了分析,正确建立数学模型,学生之间的探究讨论就没有充分进行。

  课后,我反思我的教学,在教学时学生没有体验无法感知问题,作为教师一定要发扬民主,真正做好教学的组织与引导,鼓励学生大胆想象,质疑,并尽可能的提供丰富多彩的学习素材。比如本节课如果先与体育课联系进行提前渗透,就会节省很多的介绍规则时间,讨论会更充分,效率会更高,才能从根本上帮助学生。

  我们现在正在进行数学课堂生生互动教学策略的.研究,学生的学习内容应该是现实的、有意义、富有挑战性的,这对教师也是一个挑战,如何为学生的互动创造条件,是我们在备课时要提前设想的。

9、九年级数学《实际问题与一元二次方程》教学反思

  1. 教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。

  2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”

  3、以导学案的.形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。

  4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。

  5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。

  6、学案的设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。

  7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。

  8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。

相关文章

推荐文章