教学设计一等奖

一元二次方程的解法配方法教学设计一等奖

2023-06-20 17:27:20

  一元二次方程的解法配方法教学设计一等奖

一元二次方程的解法配方法教学设计一等奖

1、一元二次方程的解法配方法教学设计一等奖

  教学目标:

  (一)知识与技能:

  1、理解并掌握用配方法解简单的一元二次方程。

  2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

  (二)过程与方法目标:

  1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

  2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

  (三)情感,态度与价值观

  启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

  教学重点、难点:

  重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

  难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。

  教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。

  教学过程

  教学过程

  教学内容

  学生活动

  设计意图

  一 复习旧知

  用直接开平方法解下列方程:

  (1)9x2=4 (2)( x+3)2=0

  总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

  二 创设情境,设疑引新

  在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

  例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

  三 新知探究

  1 提问:这样的方程你能解吗?

  x2+6x+9=0 ①

  2、提问:这样的方程你能解吗?

  x2+6x+4=0 ②

  思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

  归纳总结配方法:

  通过配成完全平方式的`方法,得到一元二次方程的解,这样的解法叫做配方法。

  配方法的依据:完全平方公式

  配方法的关键:给方程的两边同时加上一次项系数一半的平方

  点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

  四 合作讨论,自主探究

  1、 配方训练

  (1) x2+12x+( )=(x+6)2

  (2) x2-12x+( )=(x- )2

  (3) x2+8x+( )=(x+ )2

  (4) x2+mx+( )=(x+ )2

  强调:当一次项系数为负数或分数时,要注意运算的准确性。

  2、将下列方程化为(x+m)2=n

  (n≥0)的形式并计算出X值。

  (1)x2-4x+3=0

  (2)x2+3x-1=0

  解:X2-4X+3=0

  移向:得X2-4X=-3

  配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)

  即:(X-2)2=1

  开平方,得:X-2=1或X-2=-1

  所以:X=3或X=1

  方程(2)有学生完成。

  3、巩固训练:课本55页随堂练习第一题。

  五 小结

  1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

  2、用配方法解二次项系数为一的一元二次方程的一般步骤:

  (1) 移项(常数项移到方程右边)

  (2) 配方(方程两边都加上一次项系数的一半的平方)

  (3) 开平方

  (4) 解出方程的根

  六 布置作业

  习题2.3第1,2题

  两个学生黑板上那解题,剩余学生练习本上计算。

  学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得

  x(10-x)=9

  但是发现所列方程无法用直接开平方法解。于是引入新课。

  学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。

  方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。

  在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:

  x2+6x=-4

  x2+6x+9=-4+9

  (x+3)2=5

  从而可以用直接开平方法解,给出完整的解题过程。

  在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。

  检查学生的练习情况。小组合作交流。

  学生归纳后教师再做相应的补充和强调。

  学生分组完成方程(2)和课后随堂练习第一题

  学生分组总结本节课知识内容。

2、一元二次方程的解法配方法教学设计一等奖

  教学目的

  1、使学生巩固等式与方程的概念。

  2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。

  教学分析

  重点:熟练掌握一元一次方程的解法。

  难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。

  突破:多练习,多比较,多思考。

  教学过程

  一、复习

  1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?

  2、等式的性质是什么?(要求说出应注意的两点)

  3、解一元一次方程的基本步骤是什么?

  以解方程-2x+ = 为例,说明解一元一次方程的基本步骤与注意点,并口头检验。

  二、新授

  1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n的值。

  分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。

  解:略

  2、下列说法中,正确的是( )。

  A -3x=0的解是x=-3

  B - x+1=4的解为x=-

  C -1= 的解是x=1

  D x2-x-2=0的解是x=2, x=-1(D正确)

  3、x等于什么数时,代数式 x+5的值比 的值小2。

  解:(解略,应根据题目的意思列出方程。)

  4、根据下列条件列出方程,并求出方程的'解。

  (1) 某数x的3倍减去9,等于某数的3分之1加上6;

  (2) 已知-3m3(x-2)n与25m2+xn是同类项,求x的值;

  (3) 已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。

  5根据下列方程的特点解方程。

  (题目见课本中P208、16的2,4)

  三、练习

  P209习题:20。

  四、小结

  1、略。

  五、作业

  1、P240 A:1,2,3,4。

  2、B:1,2。

3、一元二次方程的解法配方法教学设计一等奖

  课题:一元一次方程的解法(去分母)

  课时:第四课时

  教学内容:P197-198.例5、例6

  教学目的:掌握去分母的方法,解含有分母的一元一次方程

  教学重点:去分母的方法及其根据

  教学难点及其解决方法:

  1.去分母时,正确解决方程中不含分母的项。

  解决方法:注意分析去分母的根据,并在练习时加以强调。

  2.正确理解分数线的作用。

  解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

  教法:启发式,讲练结合。

  教学过程:

  复习巩固上几节所学的一元一次方程解法

  解方程:(学生练)5y-1=14①

  解:移项,得5y=14+1

  同并同类项,得5y=15

  系数化为1,得y=3

  (口算检验)

  新课教授

  1.引入有分母的'一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

  思考:

  (1)此方程如何求解?

  若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

  (2)能否把它还原为原来的方程①?

  若能这样,就能避免在计算过程中出现通分过程。

  (3)如何还原呢?(方程两边都乘以6)

  (4)此过程的根据是什么?(等式基本性质2)

  (5)其目的是什么?(消去分母,故此步骤称“去分母”)

  解题过程:解:去分母,得5y-1=14(板书演示约分过程)

  (以下步骤,略)

  2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

  其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

  3.练习:《掌握代数》P87.2(1)

  4.引入例6

  让学生试完成《掌握代数》P88.3(即例6)

  提示:各分母的最小公倍数是什么?

  评讲并提出注意事项:

  解:去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12(板书演示P199的过程)

  (以下步骤参照课文P198例6)

  5.小结:针对解题过程中较易出现的错误,强调注意事项:

  (1)去分母时,没分母的项不要漏乘。

  (2)去分母时,应把分子作为一个整体加上括号。(标出P199.“注意”的关键语句)

  6.练习:《掌握代数》P88.4(1)

  总结:

  1.去分母的方法及其根据

  2.去分母时要注意的事项

  练习:

  1.《掌握代数》P90.(1)、(2)、(3)(评讲,强调注意事项)

  2.《掌握代数》P90.(4)、(5)(口算检验)

  作业:

  《代数》P206.10

4、一元二次方程的解法配方法教学设计一等奖

  教学目标

  1。 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

  2。知道形如(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

  3。 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

  教学重点及难点

  1、 用直接开平方法解一元二次方程;

  2、理解直接开平方法中的整体思想,懂得(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解

  教学过程设计

  一、情景引入,理解方法

  看一看:特殊奥林匹克运动会的会标

  想一想:

  在2006年的'特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,XX学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

  解:由题意得: x2=144

  根据平方根的意义得:x=± 12

  ∴原方程的解是:x1=12 , x2=—12

  ∵边长不能为负数

  ∴x=12

  了解方法:

  上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

  【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。.

  第三阶段:怎样解方程(1+x)2=144?

  请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

  第四阶段:众人齐心当考官!

  请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程.

  1、分析学生所编的方程.

  2、从学生的编题中挑出一个方程给学生练习.

  3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

  4(x+1)2-144=0

  归纳:形如(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解。

  【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

  三、巩固方法,提高能力

  请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

  ⑴ x2=3 ⑵ 3t2—t=0

  ⑶ 32=27 ⑷ (—1)2—4=0

  ⑸ (2x+3)2=6 ⑹ x2=36x

  四、自主小结

  今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

5、一元二次方程的解法配方法教学设计一等奖

  一、教学目标

  1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

  2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。

  二、重点·难点·疑点及解决办法

  1.教学重点:的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程当中产生增根的原因。

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

  2.例题讲解

  例1 解方程。

  分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根。

  ∴ 原方程的根是。

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2 解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  ∴ 原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

  例3 解方程。

  分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.

  解:设,那么,于是原方程变形为

  两边都乘以y,得

  解得

  。

  当时,,去分母,得

  解得;

  当时,,去分母整理,得

  ,

  检验:把分别代入原方程的分母,各分母均不等于0。

  ∴ 原方程的根是

  ,。

  此题在解题过程当中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。

  巩固练习:教材P49中1、2引导学笔答。

  (二)总结、扩展

  对于小结,教师应引导学生做出。

  本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。

  本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。

  此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。

  四、布置作业

  1.教材P50中A1、2、3。

  2.教材P51中B1、2

  五、板书设计

  探究活动1

  解方程:

  分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

  设,则原方程变为

  ∴

  ∴或无解

  ∴

  经检验:是原方程的解

  探究活动2

  有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.

  解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4· )占原来农药 ,故

  整理,

  (舍去)

  答:桶的容积为40升.

6、《一元二次方程的解法》教学反思

  (1) 一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

  (2) 如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的.情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。这既提高了学生的学习兴趣,又加深了对所学知识的理解。

7、初三数学上册《一元二次方程的解法》教学反思

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值;

  2、验判别式是否大于或等于0;

  3、当判别式的数值大于或等于0时,可以利用公式求根,若判别式的数值小于0,就判别此方程无实数解。

  在讲解过程中,我要求学生先进行1、2步,然后再用公式求根。因为学生第一次接触求根公式,求根公式本身就很难,学生可以说非常陌生,如果不先进行1、2步,结果很容易出错。首先,对于一些粗心的同学来说,a,b,c的符号就容易出问题,也就是在找某个项的系数或常数项时总是丢掉前面的符号。其次,一无二次方程的求根公式形式复杂,直接代入数值后求根出错一定很多。但有少数心急的同学,他们总是嫌麻烦,省掉1、2步,直接用公式求根。

  为什么会这样呢?我认为有这几方面的'原因:

  一是学生没体会这样做的好处,其实在做题过程中检验一下判别式非常必要,同时也简化了判别式的值,给下面的运算带来方便。这样做并不麻烦,而直接用公式求值也要进行这两步。

  二是学生刚学习公式法,例题比较简单,对于简单的题,这样做还可以,但一旦养成习惯,遇到复杂的习题就不好办了。

  三是部分学生老是想图省事,没学会走,就想跑,想一口吃个大胖子。

  在今后的教学中,还要加强对新知识学习过程中格式和步骤的要求,并且对习惯不好的同学要进行耐心细致的讲解,让他们认识到这样做的弊端,掌握正确的学习方法,提高正确率。

8、《一元二次方程的解法--因式分解法》教学反思

  一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的'能力,取得较好的教学效果。

  老师提示:

  1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

  2.关键是熟练掌握因式分解的知识;

  3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.

相关文章

推荐文章