教案

实际问题与一元一次方程的教案一等奖

2023-06-21 18:12:08

  实际问题与一元一次方程的教案一等奖

实际问题与一元一次方程的教案一等奖

1、实际问题与一元一次方程的教案一等奖

  教学目标

  知识技能1.会运用一元一次方程解决有关“营销问题”,能根据实际问题中所给数量关系列方程,并熟练掌握一元一次方程的解法.

  2.了解售价、进价、利润、利润率、打折等之间关系,并能综合运用,解决实际问题.

  过程

  方法经历对“销售中的盈亏”等问题的认识分析,进一步培养学生建模思想、培养学生分析问题、解决问题的能力.

  情感

  态度通过相关应用题计算应用,感受数学在生活中的实用性和重要性,以及对我们决策的指导性,使学生热爱数学、努力学好数学.

  重点列一元一次方程解决实际生活中的“营销问题”.

  难点根据实际问题中的数量关系列一元一次方程.

  【教学环节安排】

  环节教学问题设计教学活动设计

  情境引入【问题1】

  1.“商品销

  售”问题中有哪些相关量?它们之间的关系又怎样?

  成本价(进价),标价,销售价,实际售价,

  利润,盈利,亏损,利润率、打八折,…

  2.上面这些量之间有何关系?

  总结:(1)归为四种:售价、进价、利润、利润率.

  (2)关系:①售价、进价、利润的关系式:

  商品利润=商品售价—商品进价

  ②进价、利润、利润率的关系:

  ③商品售价、进价、利润率的关系:

  (3)售价中的几种说法及关系:标价、折扣数、商品实际售价之间关系:

  教师提出问题,学生讨论、并尝试在练习本上写出,组内交流认识,每组出一名同学发表自己的观点,互相补充.

  这是第一次系统的分析销售问题中各量(名称)关系,根据学生零散阐述,系统归纳.

  学生理解众多名称的意义,以以便于理解题意.

  【问题2】根据以上分析完成下列各题:

  1.商品原价200元,九折出售,卖价(实际售价)是元.

  2.商品进价是30元,售价是50元,则利润是元.

  3.某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是 元.

  4.某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元.

  5.某商品按定价的八折出售,售价是14.8元,则原定售价是 .

  6.某商品的利润率是12%,进价为50元,则利润是元.

  【问题3】

  探究1某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

  【分析】

  (1)两件衣服共卖了多少元?是盈是亏要看这家商店买进这件衣服时花了多少钱?

  (2)盈利的那件衣服的进价是多少?

  ①已知_____和_____求进价,可设进价为x元/件,根据利润率是25%可得利润是________;

  ②根据利润、进价、售价之间的关系可列方程为_______________________,即可求出进价x.

  (3)亏损的那件衣服的'进价是多少?

  ①已知_____和_____求进价,可设进价为y元/件,根据利润率是-25%可得利润是________;

  ②根据利润、进价、售价之间的关系可列方程为______,即可求出进价y.

  (4)因此是否盈亏取决于x+y-120大小.学生独立完成,师生共同核对,理解各名称含义和各量之间的相互关系

  提出问题,让学生猜测,是亏损还是盈利,意见会不一致,从而引起学生好奇,调动大家积极性,渴望寻求真正答案.

  因为问题中涉及两种商品,所以有两个进价、两个售价(相同)、两个利润率(互为相反数)、两个利润,所以它们之间关系复杂,学生理解能力有限,加之前面没有系统讲解,难度较大.因此要引导学生,通过推理、逐个、逐步理清.不易过于简化.

  注意:解答过程中要用到两个关系式子:①利润=售价-进价;②利润=进价×利润率.

  所以有一定难度,要注意.

  尝试应用2.一商店把某商品按标价的八折出售仍可获得10%的利润.若该商品的进价是每件1600元,问该商品的标价是多少元

  变式一:商店对某商品按标价的8折出售,已知它的标价是2200元,打折后的销售利润率是10%,求此商品的进价?

  变式二:商店对标价为2200元的某商品打8折出售,已知它的进价为1600元,求此商品打折后的利润率?

  变式三:商店对标价为2200元的某商品打折出售,打折后仍可获得10%的利润,已知它的进价为1600元,问此商品是按几折出售的?是由四个题组成,反映了进价、售价、实际售价、折扣、利润率之间的内在联系.学生独立(或分组)完成后教师讲评总结.

  成果

  展示1.通过本节的学习你学到了哪些知识和方法?

  2.你有什么收获?谈谈你对数学认识和看法.学生总结、阐述,交流.发表自己观点,教师评价鼓励、补充总结.

  补偿提高1.在我们的身边有一些股民,在每一次的股票交易中是或盈利或亏损.某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%;乙种股票卖出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损?盈利或亏损多少元?

  2.平邑县某琴行同时卖出两台钢琴,每台售价为9600元.其中一台盈利20%,另一台亏损20%.这次琴行是______(填亏损或盈利)若是盈利盈利多少?若是亏损多少?变式应用,对比与例题,条件变化时,解法不变.

  对比学习,课下自选完成.

  作业

  设计必做题:

  课本第习题3.4

  第2,3,4题;

  选做题:

  课本习题3.4第7题教师布置作业,并提出要求.

  学生课下独立完成,延续课堂.

2、实际问题与一元一次方程的教案一等奖

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

  二、教学目标分析

  (一)知识技能目标

  1.目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

  2.目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的.能力.

  (二)过程目标

  1.目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识.

  2.目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.

  (三)情感目标

  1.目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

  (2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

  2.目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

3、实际问题与一元一次方程的教案一等奖

  教学内容

  根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.

  教学目标

  掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.

  利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.

  重难点关键

  1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.

  2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.

  教学过程

  一、复习引入

  1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?

  2.正方形的面积公式是什么呢?长方形的面积公式又是什么?

  3.梯形的面积公式是什么?

  4.菱形的面积公式是什么?

  5.平行四边形的面积公式是什么?

  6.圆的`面积公式是什么?

  二、探索新知

  现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.

  例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.

  (1)渠道的上口宽与渠底宽各是多少?

  (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?

  分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.

  :(1)设渠深为xm

  则渠底为(x+0.4)m,上口宽为(x+2)m

  依题意,得: (x+2+x+0.4)x=1.6

  整理,得:5x2+6x-8=0

  解得:x1= =0.8m,x2=-2(舍)

  ∴上口宽为2.8m,渠底为1.2m.

  (2) =25天

  答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

  例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

  老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.

4、实际问题与一元一次方程的教案一等奖

  一、目的要求 使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程 7x-2=6x-4

  时,用移项可直接得到 7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x; (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程()

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到 x=5+7,

  x=12。

  又如方程 7x=6x-4

  的两边都减去6x,就可以得到 7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

  利用移项解前面提到的方程 3x-2=2x+l

  解:移项,得 3x-2x=1+2。①

  合并,得 x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

  所以x=3是原方程的.解。

  在上面解的过程中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页 练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业

  习题2.1 P73 复习巩固

5、实际问题与一元一次方程的教案一等奖

  教学目标:

  1、 使学生会列一元一次方程解有关应用题。

  2、 培养学生分析解决实际问题的能力。

  复习引入:

  1、在小学里我们学过有关工程问题的.应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

  (1)__________ (2)_________ (3)_________

  人们常规定工程问题中的工作总量为______。

  2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

  讲授新课:

  1、例题讲解:

  一件工作,甲单独做20小时完成,乙单独做12小时完成。

  问:甲乙合做,需几小时完成这件工作?

  (1)首先由一名至两名学生阅读题目。

  (2)引导

  Ⅰ:这道题目的已知条件是什么?

  Ⅱ:这道题目要求什么问题?

  Ⅲ:这道题目的相等关系是什么?

  (3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

  2、练习:

  有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

6、《实际问题与一元一次方程》的教学反思

  我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下;

  一、成功方面

  1、本节课设计成学案的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。

  2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。

  3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。

  4、教学方法采用学生先练教师后讲的模式,有利于培养学生的'尝试意识,激发探究热情。

  二、不足方面

  1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。

  2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。

  3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。

  三、努力方向

  加强学习,厚积薄发;钻研教材,教法,一切教学活动的出发点都要把学生放在心上。

7、七年级数学《实际问题与一元一次方程》的教学反思

  这节课主要讲了一道实际应用题,是关于足球比赛的。这道题都是来源于生活,又作用于生活,提供学生生活中熟悉的材料作背景,学生学习兴趣很高。并且本节课采用活动—探索—合作—交流的形式,培养了学生的团结协作能力、勇于探索的精神。使学生在轻松熟悉的环境中完成了学习任务。自我感觉设计比较合理,题目适当,时间恰当,并注重知识的前后衔接,照顾更多的`中差生。

  不足之处:

  过高估计学生,导致对学生在课堂上出现了很多小问题,今后应加强细节的设计和全面考虑。学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别回答为主,虽然许多个别回答非常精彩,但仍需注意讨论形式的变化,让学生从合作学习中有所提高。另外,还需加强的是学生发现问题能力的培养,多数问题的发现还是在教师的指导下完成的。如果能达到学生提出问题,小组讨论,全班解决,那效果更佳。

8、实际问题与一元一次方程教学反思

  这节课主要让学生理解并掌握如何利用一元一次方程解应用题,将实际问题转化为数学问题,找等量关系,设合理的未知数,解决实际应用!

  这节课的设置是由带学生参观动物园这一条主线,通过利用一元一次方程解决在参观过程中遇到的一些实际问题,如出发时的租车问题,到动物园要买票问题,以及到动物园以后遇到的一些问题等,都可以紧紧带着学生的思绪通过边游览边进行数学知识的学习,让学生深刻体会到数学与实际紧密性,从而增加学生学习数学的'兴趣。

  教学中要突出实际问题想数学问题的转化过程,关键是找等量关系,以及设未知数列方程,类比以前学过的列方程求解的知识,让学生自己通过探究、讨论找等量关系,以及设合适的未知数,进而列出一元一次方程对问题进行求解,通过学生展示探究结果,老师作简单总结点评,让学生体会数学的实用性。

  在教学过程中有一些学生不能抓住题目给的已知条件找出等量关系,列出的方程不对,应正确引导学生如何将实际问题转化为数学问题、找等量关系,把文字术语转化成数学式子,列出正确的一元一次方程。

相关文章

推荐文章