教案

1课时数学教案一等奖元二次方程

2023-06-29 13:55:11

  1课时数学教案一等奖元二次方程

1课时数学教案一等奖元二次方程

1、1课时数学教案一等奖元二次方程

  【教学目标】

  (1)理解一元二次方程的概念

  (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

  (2)会用因式分解法解一元二次方程

  【教学重点】一元二次方程的概念、一元二次方程的一般形式

  【教学难点】因式分解法解一元二次方程

  【教学过程】

     (一)创设情景,引入新课

               实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

               由学生说出这几个方程的共同特征,从而引出一元二次方程的'概念。

     (二)新授

              1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

         2:一元二次方程的一般形式(形如aX+bX+c=0)

                   任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

             3:讲解例子

             4:利用因式分解法解一元二次方程

             5:讲解例子

             6:一般步骤

   (三)小结

   (四)布置作业

2、1课时数学教案一等奖元二次方程

  一、教学目标

  1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

  2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。

  二、重点·难点·疑点及解决办法

  1.教学重点:的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程当中产生增根的原因。

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

  2.例题讲解

  例1 解方程。

  分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根。

  ∴ 原方程的根是。

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2 解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  ∴ 原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

  例3 解方程。

  分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.

  解:设,那么,于是原方程变形为

  两边都乘以y,得

  解得

  。

  当时,,去分母,得

  解得;

  当时,,去分母整理,得

  ,

  检验:把分别代入原方程的分母,各分母均不等于0。

  ∴ 原方程的根是

  ,。

  此题在解题过程当中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。

  巩固练习:教材P49中1、2引导学笔答。

  (二)总结、扩展

  对于小结,教师应引导学生做出。

  本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。

  本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。

  此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。

  四、布置作业

  1.教材P50中A1、2、3。

  2.教材P51中B1、2

  五、板书设计

  探究活动1

  解方程:

  分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

  设,则原方程变为

  ∴

  ∴或无解

  ∴

  经检验:是原方程的解

  探究活动2

  有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.

  解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4· )占原来农药 ,故

  整理,

  (舍去)

  答:桶的容积为40升.

3、1课时数学教案一等奖元二次方程

  只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。下面,小编为大家分享初中数学试讲教案《一元二次方程复习》,希望对大家有所帮助!

  试讲人:XXX

  知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法

  重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法

  教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!

  1、自我介绍:30s

  大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

  2、一元二次方程概念、系数、根的判别式:8min30s

  我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

  (1)x -10x+9=0 是 1 -10 9

  (2)x +2=0 是 1 0 2

  (3)ax +bx+c=0 不是 a必须不等于0(追问为什么)

  (4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

  一元:只含一个未知数

  二次:含未知数项的最高次数为2

  方程:一个等式

  一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。

  3、一元二次方程的解法:20min

  那说到求方程的根我们究竟学了几种求一元二次方程根的'方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~

  (1)直接开方法

  遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?

  (2)配方法

  大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

  简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)

  需要变换的:2x +4x-8=0

  步骤:将二次项系数化为1,左右同除2得:x +2x-4=0

  将常数项移到等号右边得:x +2x=4

  左右同时加上一次项系数一半的平方得:x +2x+1=4+1

  所以有方程为:(x+1)=5 形似 x=n

  然后用直接开平方解得x+1=±5 x=±5-1

  大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!

  题目:1/2x-5x-1=0 答案:x=±+5

  大家都会做吗?还需要讲解详细步骤吗?

  (3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~

  首先,公式法里面的公式大家还记得吗?

  x=(-b ±2-4ac )/2a

  这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:

  3x -2x-4=0

  其中a=3,b=-2,c=-4

  带入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)

  化简得:x1=(1-)/3 x2=(1+)/3

  同学们你们解对了吗?

  使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

  (4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

  简单来说,因式分解就是将多项式化为式子的乘积形式。

  比如说ab+ab 可以化成ab (1+a)的乘积形式。

  那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0 这样就可以解出x=-a/m x=-b/n

  我们一起做一个例题巩固一下:4x +5x+1=0

  则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0

  所以有x=-1 x=-1/4

  同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3

  x-9=0 x=3 x=-3

  4、总结:1min

  好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!


4、1课时数学教案一等奖元二次方程

  作为一名默默奉献的教育工作者,就难以避免地要准备教学设计,借助教学设计可以更好地组织教学活动。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编整理的九年级数学公开课《一元二次方程》教学设计,欢迎大家分享。

  教材分析

  一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的'教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。为接下来的学习起到很好的铺垫作用

  学情分析

  九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。

  教学目标

  一、知识与技能:

  1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;

  2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;

  3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。

  二、过程与方法

  1. 在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;

  2. 借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学

  三、情感态度与价值观

  1. 通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;

  2. 通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。

  教学重点和难点

  重点:一元二次方程的概念及一般形式。

  难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。

5、1课时数学教案一等奖元二次方程

  教学目标:

  (1)理解一元二次方程的概念

  (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

  (2)会用因式分解法解一元二次方程

  教学重点:

  一元二次方程的概念、一元二次方程的一般形式

  教学难点:

  因式分解法解一元二次方程

  教学过程:

  (一)创设情景,引入新课

  实际例子引入:列出的'方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

  由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

  (二)新授

  1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

  练习

  2:一元二次方程的一般形式(形如aX+bX+c=0)

  任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

  3:讲解例子

  4:利用因式分解法解一元二次方程

  5:讲解例子

  6:一般步骤

  练习

  (三)小结

  (四)布置作业

  板书设计

6、初三数学《一元二次方程》教学反思

  1. 教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的.时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。

  2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”

  3、以导学案的形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。

  4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。

  5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。

  6、学案的设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。

  7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。

  8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。

7、《一元二次方程》的数学教学反思

  一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生很容易理解。这里我通过两个实际问题,一个是求长方形的面积问题,另一个增长率问题,让学生经历了二次项的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的练习,如若关于x的方程(m+1)x|m|+1-2x+3m=0是一元二次方程,求m的值,学生的出错率也不低;如果再问m为何值时这个方程是一元一次方程,正确率就会很低,所以可以说学生对此类考察方程概念的题型掌握得还不是很好。本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。本节的.第三个知识点就是一元二次方程根的概念,课件上关于这个知识点设置了两个练习:练习1:判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根?

  练习2:已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值。对于这两个练习学生在课堂上都回答得很快,但在课后的作业中发现了一个非常严重的问题,就是学生他知道要用“代入检验法”来判断一个值是不是方程的根,但对于如何书写这个判断过程却没有任何思绪,以致于在作业中很多的同学或是直接下结论或是在判断时都没有分开“左边=”“右边=”,这块书写的过程是我教学的一个疏忽,所以很多学生没有掌握。此外,对于“一元二次方程的根”这个知识还有一类这样的提高题,如:已知一元二次方程ax2+bx+c=0,若满足a+b+c=0,4a-2b+c=0你能通过观察知道这个方程的根吗?实际上这类题目中有着一种逆向的思维,所以学生不是很容易理解和掌握。

8、初三数学《一元二次方程》教学反思

  列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

  在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

  总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。

9、初三数学《一元二次方程》教学反思

  首先因为学生在开始已经学习了用直接开平方法和因式分解法解一元二次方程,因此通过大屏幕展示学生比较感兴趣的篱笆问题引入,从而引出本节课的`内容,在学生掌握的过程中,选取不同类型的方程让学生用配方法解,以达到巩固的目的,最后为了进一步拓展提升,出现了二次项系数不是一的方程,让学生学会用类比的方法解决问题。

  我认为本节课自己在实施学生主体参与方面做到比较成功:

  1、巩固旧知对学生来说是非常重要的,尤其是初三年级的学生大部分已经有了厌学的情绪,或是怕自己跟不上,产生消极的心里,通过复习旧知,可唤起他们学习的积极性,大面积提高课堂效率。

  2、从生活实例中引入新课,是数学课程标准的要求,学生们学习数学的目的就是为了应用数学知识解决实际问题,对他们感兴趣的话题他们就会愈学愈带劲,这样更能提高学困生的学习积极性。

  3、初三数学又得体现分次优化,因此,在本节课的重点教学时,我备课翻阅了近几年的中考题,选择了一些比较典型的习题让同学们来做,并让他们在小组内充分的交流,以达到提高全体学生学习积极性的目的。

  教学中还有许多需要改进的地方:

  1、本节课中有些能够让学生口答的地方应节省出时间让学生做大量的类型题,以提高优生的能力。

  2、课堂小结的权利也应交给学生来总结,以提高学生的主体参与能力。

  3、题目的难易度没有掌握好,根本上解决不了好学生吃不饱,跟队生吃不了的问题。

  4、课堂容量不大,节奏比较缓慢。应该是大容量,快节奏,高效率。

相关文章

推荐文章