教案

数学教案一等奖《一元一次方程-利用等式的性质解方程》

2023-06-29 11:42:11

  数学教案一等奖《一元一次方程-利用等式的性质解方程》

数学教案一等奖《一元一次方程-利用等式的性质解方程》

1、数学教案一等奖《一元一次方程-利用等式的性质解方程》

  一、目的要求 使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程 7x-2=6x-4

  时,用移项可直接得到 7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x; (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程()

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到 x=5+7,

  x=12。

  又如方程 7x=6x-4

  的两边都减去6x,就可以得到 7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

  利用移项解前面提到的方程 3x-2=2x+l

  解:移项,得 3x-2x=1+2。①

  合并,得 x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

  所以x=3是原方程的.解。

  在上面解的过程中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页 练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业

  习题2.1 P73 复习巩固

2、数学教案一等奖《一元一次方程-利用等式的性质解方程》

  教学目的

  1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

  2、使学生加强了解列一元一次方程解应用题的方法步骤。

  教学分析

  重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

  难点:寻找相遇问题中的相等关系。

  突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。

  教学过程

  一、复习

  1、列方程解应用题的一般步骤是什么?

  2、路程、速度、时间的关系是什么?

  3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

  二、新授

  1、引入

  列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的`方法。

  例(课本P216例3)题目见教材。

  分析:(1)可以画出图形,明显有这样的相等关系:

  慢车行程+快车行程=两站路程

  设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

  (2)再分析快车先开了30分两车相向而行的情形。

  同样画出图形,并按课本讲解,(见教材P217~218)

  由学生完成求解过程,并作出答案。

  解:略

  说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

  (2)不是同时出发的,要注意时间的关系。

  三、练习

  P220练习:1,2。

  四、小结

  1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

  2、相向而行的相遇问题中,要注意时间的关系。

  五、作业

  1、P222 4.4A:13,14,15。

  2、基础训练:同步练习3。

3、数学教案一等奖《一元一次方程-利用等式的性质解方程》

  教学内容:

  教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

  教学目标要求:

  1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

  2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

  教学重点:

  理解“等式的两边同时加上或减去同一个数,所得结果仍然是等式”。

  教学难点:

  会用等式的这一性质解简单的方程。

  教学过程:

  一、教学例3

  1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

  提问:现在的天平是平衡的',如果将天平的一边加上一个10克的砝码,这时天平会怎样?

  谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

  2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

  3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

  谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

  启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

  4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

  5.做练一练的第1题

  二、教学例4

  1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

  2.讲解:要求出方程中未知数的值,要先写“解”,要注意把等号对齐。

  3.完成试一试

  4.完成练一练

  提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

  三、巩固练习

  1. 做练习一的第3题

  2.做练习一的第4题

  3.做练习一的第5题

  四、全课小结

  提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

  五、作业

  完成补充习题。

  板书设计:

  等式性质和解方程

  等式的性质                            解方程

  50=50            50+10=50+10          解: X+10=50

  x+a=50+a     50+a-a =50+a-a          X-10=50-10

  X=40

  检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

4、数学教案一等奖《一元一次方程-利用等式的性质解方程》

  教材分析

  合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

  学生分析

  学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。

  【教学目标】

  (一)知识技能

  1.掌握解方程中的合并同类项.

  2.理解并掌握移项变号法则进行解方程.

  3.灵活的运用移项变号法则解决一些实际问题.

  (二)数学思考

  使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.

  (三)解决问题

  能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.

  (四)情感态度

  解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力

  【教学重点】

  利用合并同类项、移项变号法则解方程.

  【教学难点】

  合并同类项 、移项变号法则.

  【学习过程】

  一、新课导入

  1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。

  2.引导学生探索新知

  问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?

  【师生活动】

  教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。 请说出你的理由?

  学生:我准备用方程解决这个问题。用方程解比较简单,设出的未知数就可以当成已知的条件来用了。

  教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。

  学生:先设出未知数,因数去年的数量和前年的数量有关,今年的数量又和去年数量有关,因此设前年购买新桌椅x套,可以表示出:去年购买了2x套,今年购买了6x套。

  教师:未知数设了,下一步应该做什了呢?

  学生:列方程。

  教师:列方程的根据是什么?

  学生:相等关系是,前年购买的桌椅+去年买的桌椅+今年买的桌椅=270套。

  教师:谁说一下?

  学生:x+2x+6x=270

  教师:请同学们仔细观察等号左边的三个代数式有什么特点?

  学生:都含有字母x,并且x的指数相同都是1.

  教师:我们在第二章的内容中学习了,具有这们特点的式子我们把它们叫什么?

  学生:同类项。

  教师:提到同类项了,我们就会想到什么?

  学生:合并同类项

  教师:谁还记得怎么合并同类项?

  学生:同类项的系数相加减,字母和字母的指数不变。

  教师:我们共同说一个x+2x+6x合并后的结果为

  学生:9x

  教师:此时方程就变成了9x=270,我们要求的是x而不是9x,如何求出x?

  学生:根据等式性质2两边都除以9,得到x=30

  活动:从上述方程的解决你能发现什么?

  教师:同学们仔细观察原来9x的系数是9,后来根据等式的性质2两边都除以9后得到了x,此时x的系数是1,这个过程我们把它叫做系数化为1。“系数化为1”指的是使方程的一边ax化为x现在我们把这个问题解决了,请同学们仔细回忆一下我们是怎么做的。这里可能还有其他设未知数的方法(比如设今年的为x台)若出现这种情况,请同学分析比较多种解决方案中的简易,找到最简方法.

  教师:请同学们思考上面解方程中“合并同类项”起了什么作用?

  学生:起到了化简的作用。

  教师:出示例题-3x+0.5 x=10

  学生:在练习本上做,然后集体订正。

  巩固练习:第89页 练习的(2)(4).

  二、问题引申、共同探究

  让学生在活动中发现移项变号法则,培养学生用方程的意识解决数学中的实际的。

  问题2: 把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问这个班有多少名学生?

  学生活动:

  学生独立思考,发现若设这个班有x名学生。

  每人分4本时,共分出书的总数为4x ,加上剩余的'2本,这些书的总数为(4x+2)本。

  每人分5本时,需要书的总数为5x本,减去缺的5本,这些书的总数是(5x-5)

  于是这些书有两种表示方法,书的总数不变,根据这个等量关系,得到方程4x+2=5x-5.

  教师活动设计:让学生体会运用方程的优点,同时学生可能发现多种解决方案(比如设数的总数是x,则可以列出相应的方程)同样让学生进行比较,发现最佳方法.

  思考:对于方程4x+2=5x-5两边都含有x,如何把它向x=a的形式转化?

  学生活动设计:学生主动探究解决问题的方法,为了达到解方程的目的,可以运用等式性质1,把等式的两边同时减去5x,则等号的右边没有了x的项4x-5x+2=-5,再把等式的两边同时减去2,则方程的左边没有了常数项,于是得到4x-5x=-5-2,然后转化为我们所熟悉的形式,进行合并便可以解决该问题了。

  教师活动设计:在学生解决问题的过程中,让学生自己观查发现变形的特点,从而让他们总结出移项变号.

  活动:让学生观察由方程4x+2=5x-5得到方程4x-5x=-5-2的这一过程,你们能发现什么?

  师生共同归纳:

  把等式的一边的某项变号后移到另一边,叫作移项(依据是等式性质1).

  教师:上面解方程中“移项”起了什么作用?

  学生:自由发言

  教师:解释“对消”与“还原”就是指“合并同类项”和“移项”

  三、巩固练习

  应用移项与合并同类项解方程,进一步深化解方程的过程。

  例: 解下列方程.

  (1)3x+5=4 x+1;   (2)9-3y=5y+5 ;  .

  学生活动设计:找两个学生上黑板板演,在板演后,让学生对以上同学的做法进行评价,寻找问题所在,表达问题产生的原因,找到正确的方式方法.

  教师活动设计:引导学生对解方程的过程进行独自体验,进一步感受解方程的过程.

  〔解答〕(1)移项,得

  3x-4x=1-5,

  合并同类项,得

  -x=-4,

  系数化为1,得

  x=4.

  〔解答〕(2)移项得,

  -3y-5y=5-9,

  合并得,

  -8y=-4,

  系数化为1得,

  四、拓展应用

  解决实际问题,培养学生思维的深刻性

  问题1:老师的学校距离林东镇20公里,公共汽车行驶0.5小时正好走完全程,求公共汽车的平均速度.

  问题2:如果老师的学校距离林东镇20公里,公共汽车0.5小时所走的路程大于全程,求公共汽车的平均速度.能不能用方程来解答?为什么?

  【师生活动】

  学生口头解答问题1,尝试解答问题2,并在小组内交流讨论.

  教师引导学生通过对问题2的思考,归纳、概括出列方程解实际问题的关键为:找相等关系.

  教师要重点关注学生能否根据方程的定义想到列方程解应用题要找相等关系.

  【设计意图】

  通过对问题1的解答,使学生回顾列方程解应用题的六个步骤.同时使学生认识到方程是解决实际问题的一种工具.

  通过对问题2的探究,使学生知道为什么列方程解应用题要找相等关系,使学生经历知识的形成过程.最终达到知其然知其所以然的目的.

  例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度。

  解:设船在静水中的平均速度为x千米/小时,

  则顺流的速度为    千米/时;逆流的速度为      千米/时.

  顺流的路程=         ,逆流的路程           .

  相等关系为             

  思考:

  1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?

  2.怎样求甲乙两个码头之间的距离?

  【师生活动】

  学生自主完成空白部分,完成后组内交流.为下节课的内容做基础。

  教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.

  学生独立列方程并解方程.

  教师找部分学生板演并讲解思路.

  教师关注学生能否正确解方程.

  【设计意图】

  通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引领,降低问题的难度,从而将难点锁定在找相等关系上.避免难点太多,造成无从下手,重点、难点不突出的情况.利于学生形成正确的思维过程.

  五、课堂小结

  学生谈本节课的收获,教师进行总结。

  六、作业布置

  必做题:课本93页1、3题

  选做题:

  1.洗衣机厂今年计划生产洗衣机25 500台,其中 Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为 1:2:14,这三种洗衣机计划各生产多少台?

  2.用一根长60m 的绳子围出一个矩形,使它的长是宽的1.5倍,长和宽各应是多少?

  板书设计:

  解一元一次方程

  1.合并同类项起的作用:化简

  2.移项:把等式一边的某项变号后移到另一边,叫做移项。

  注意:移项变号。

  例1(1)移项,得

  3x-4x=1-5,

  合并同类项,得

  -x=-4,

  系数化为1,得

  x=4.

  七、教学反思

  实施开放式教学,倡导自主探索、合作交流的学习方式。让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法。教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念。

5、数学教案一等奖《一元一次方程-利用等式的性质解方程》

  全国中小学“教学中的互联网搜索”优秀教学案例评选

  高中化学《金属的化学性质---钠》教案设计

6、七年级数学上册《解一元一次方程-合并同类项与移项》教学反思

  一、设计

  1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?

  2、让学生尝试解这两个方程:(1)x+2x+4x=140;(2)x+4=-6

  3、学生做好后先分析第一个方程,左边做了什么变形?这样做起什么作用?再分析第二个方程,根据等式性质1由x+4=-6变形为x=-6-4发现数据怎么变化的?从而归纳出利用移项、合并同类项等方法解一元一次方程。

  4、学生练习巩固、反馈。

  5、最后小结收获与运用合并、移项的注意点。

  二、反思

  1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。因此在设计复习题时有意为后面做铺垫,一题多用。

  2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的项归到方程的.同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。整个过程体现了化归的数学思想。

  3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。

  4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。

7、《一元二次方程的解法--因式分解法》教学反思

  一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的'能力,取得较好的教学效果。

  老师提示:

  1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

  2.关键是熟练掌握因式分解的知识;

  3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.

8、《我换牙了----统计》数学教学反思

  青岛版一年级教材第九单元第一课时为统计类知识配备的情景图是“我换牙了”。虽然学生正值换牙期,选材贴近学生的自身实际,但是还有一部分学生不知道掉了几个牙,而且情境图中只体现了换2颗牙、3颗牙、4颗牙的小朋友,与学生的实际情况不太相符,所以我在教学前我先让学生搞清楚自己换了几颗牙,如果自己不明确,要回家问家长。在充分了解学生换牙情况下,设计并绘制了比课本更为详细的表格,把换五颗牙、六颗牙、不换牙的、以及换6颗以上的都考虑进去。这就给学生提供了一个各抒己见的平台。

  注重激发学生的学习兴趣。引导学生经历统计的发生、发展过程,强化了学习统计过程中的体验与感受,培养了学生分析问题,解决问题的能力。

  注重过程的激励性评价,促使学生得到全面而富有个性化地发展。

  本节课的教学设计,充分体现了教材的编写意图,在学生轻松、愉快地经历统计过程的同时,不断地引导学生进入创新思维的广阔天空。

  感觉不足之处是:

  1、在实施教学中的教学技巧,有待提高,如何更好的把握好合作探究环节,如何做好练习还应再继续努力。只要更好的提高教学效率,才能更好的驾驭好课堂!

  2、本课中的预设确实不够到位,在绘制竖式条形统计图的时候,部分学生问是从上还是从下开始统计。对于这个问题是教学前没有预设到的,所以,我便直接告诉学生从下面往上统计。今后备课还要细心,要预设更多的问题!

相关文章

推荐文章