教案

乘法的意义及其运算定律数学教案一等奖

2023-06-29 14:45:08

  乘法的意义及其运算定律数学教案一等奖

乘法的意义及其运算定律数学教案一等奖

1、乘法的意义及其运算定律数学教案一等奖

  教学目标

  1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题.

  2.使学生理解和掌握乘法交换律,并能运用它进行验算.

  3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力.

  教学重点:

  使学生理解并运用乘法的意义及其运算定律——交换律.

  教学难点:

  乘法交换律的应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1.口算:14×3 50×30 2×50 15×4 15+15+15+15

  4+4+4+4 30×12 60× 40 4×25 9+9+9+9+9

  2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)

  二、探求新知

  1.教学乘法意义:

  (1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载

  引导学生分析:横着看或竖着看,每排放几个,一共有几排?

  教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

  用加法计算:5+5+5+5+5+5=30(个)

  或6+6+6+6+6=30(个) (教师板书)

  教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

  用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

  (2)对比例1中的两种方法,哪种方法简便?

  引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.

  教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

  教师补充说明:求几个相同加数和的简便运算叫做乘法.演示课件“乘法的意义” 下载

  相乘的两个数叫做因数,乘得的数叫积.

  (3)教学1和0的乘法特点:

  想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的`和的?

  启发学生举例:3×1=3 1×1=1 3×0=0 0×0=0 (教师板书)

  引导学生观察:这几个算式都和哪几个数有关系?

  教师归纳:一个数和1相乘,仍得原数.

  一个数和0相乘,仍得0.

  (4) 反馈练习:(投影出示)

  ①下列算式能否改成乘法算式,为什么?

  120+120+120+120 80+90+70 15+15+15+20

  ②判断:

  求几个加数和的简便运算叫乘法.( )

  求几个相同加数和的运算叫乘法.( )

  2.教学乘法交换律:

  (1) 出示例2 演示课件“乘法交换律”出示例2

  观察下面每组的两个算式,它们有什么样的关系?

  12×5○5×12 400×20○20×400

  引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等.

  学生讨论:是不是所有像这样的式子都具有这些特点呢?

  引导学生互相讨论,自己举例说明,教师巡视.

  启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变.

  教师指出:这叫做乘法的交换律.

  反馈练习:

  ①下列各式运用了乘法的交换律,对吗?为什么?

  11×9=9×100 12×18=2×18 a+b=b+a

  ②课本第60页“做一做”第1题.

  根据运算定律在下面的□里填上适当的数.

  12×32=32×□ 39×41=□×□

  (2) 教师提问:

  加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a) (教师板书)

  教师指出:这里a、b表示大于0或等于0的整数.

  教师提问:以前学习哪些知识时用了乘法交换律.(笔算乘法验算时用到了乘法交换律.)

  (3)练习:课本第60页的“做一做”第2题.

  计算下面各题,用交换因数的位置的方法进行验算.

  32×25 105×424

  三、巩固发展

  四、课堂小结

  教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

  五、布置作业

  教材62页1、2题

  1题、应用乘法意义说明下面各题为什么要用乘法计算?

  (1) 一幢宿舍楼有6个单元,每个单元可以住15户.一共可以住多少户?

  (2) 一头牛重500千克,一头大象的重量是这头牛的10倍.这头大象有多重?

  2题、根据运算性质定律在下面□里填上适当的数.

  15×16=16×□ 25×7×4=□×□×7

  (60×25)×□=60×(□×8) (125×□)×□=125×(9×14)

2、乘法的意义及其运算定律数学教案一等奖

  教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

  教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点难点:乘法的意义和乘法交换律

  授课类型:新授课 练习课

  教学方法:讨论法、讲授法

  授课时间:一课时

  教具准备:多媒体

  教学过程:

  一、复习

  教师出示复习题。

  1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2、同学们做纸花,小学数学教案《数学教案-乘法的意义和运算定律》。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  上面这些题哪些可以用乘法计算?为什么?

  二、新课

  1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  解答这道题用乘法计算简便还是用加法计算简便?

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  2、教学乘法交换律。

  让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

  三、巩固练习:

  1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

  2、做练习五的第3、4题。学生独立做完后,再集体核对。

  四、作业:练习五的第1、2、5题。

  小结:今天我们学了什么?什么叫乘法的交换律?

  附板书:乘法的意义和乘法交换律

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  求几个相同加数的`和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

3、乘法的意义及其运算定律数学教案一等奖

  教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

  教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点难点:乘法的意义和乘法交换律

  授课类型:新授课 练习课

  教学方法:讨论法、讲授法

  授课时间:一课时

  教具准备:多媒体

  教学过程:

  一、复习

  教师出示复习题。

  1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  上面这些题哪些可以用乘法计算?为什么?

  二、新课

  1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  解答这道题用乘法计算简便还是用加法计算简便?

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  2、教学乘法交换律。

  让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

  三、巩固练习:

  1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

  2、做练习五的第3、4题。学生独立做完后,再集体核对。

  四、作业:练习五的.第1、2、5题。

  小结:今天我们学了什么?什么叫乘法的交换律?

  附板书:乘法的意义和乘法交换律

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

  一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

  两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

4、乘法的意义及其运算定律数学教案一等奖

  教学目标

  知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

  能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

  培养学生观察、比较、抽象、概括等能力。

  培养学生的数感和符号感。

  情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

  教学重难点

  教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

  教学难点:应用乘法分配律解决实际问题。

  教学工具

  课件

  教学过程

  (一)生活引入,感知规律

  1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

  2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

  3、爸爸和妈妈都爱我,这句话还可以怎样说?

  4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

  5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

  [策略]把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

  (二)开放探究,建构规律

  1、情境引入

  讲本学期开学,学校要为一、二、三年级更换桌椅情况:

  (课件播放),提出问题,引发学生思考:

  (1)请仔细观察大屏幕:

  学校为一年级更换3套桌椅共需要多少钱?

  学校为二年级更换5套桌椅共需要多少钱?

  学校为三年级更换6套桌椅共需要多少钱?

  (2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

  (3)说说你的'解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

  (4)谁愿意接着汇报?

  2、第一次发现

  (1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

  小结:每一组算式的结果相等。

  (2)我把这两个算式用等号来连接,行吗?为什么?

  板书:(50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  3、第二次发现

  (1)再观察这三组算式,还有什么发现吗?

  (2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

  (3)每人举出一个例子,写在纸上,然后请同桌帮助验证

  汇报交流:像这样的例子还能举出一些吗?举的完吗?

  4、归纳总结:

  (1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

  (2)请看大屏幕,你们的意思是这样吗?小声读读。

  (3)有什么不懂的词吗?

  5、个性化理解

  (1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

  根据学生回答教师板书:

  (□+○)×☆=□×☆+○×☆

  (甲+乙)×丙=甲×丙+乙×丙

  (a+b)×c=a×c+b×c

  (2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

  (3)对于乘法分配律用字母表示感觉怎么样?

  [策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

  (三)激活联系、应用规律。

  1、请你把相等的两个算式连线。

  (8+13)×4 41×(3+27)

  3×(21+6) 7×5 +8

  41×3 +41×27 3×21 +3×6

  7×(5+8) 8×4 +13×4

  (1)你为什么连得这么快?是计算了吗?

  (2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

  2、根据乘法分配律填空:

  (83+17)×3=□×□○□×□

  10×25+4×25=(□○□)×□

  (1)谁愿意展示一下你填写的。有不同意见吗?

  (2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

  (3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

  [策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

  3、联系旧知、同已有知识建立联系。

  谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

  现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

  [策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

  (四)课堂小结:

  今天,学习了乘法分配律,你有什么想法?

5、乘法的意义及其运算定律数学教案一等奖

  教学目标

  知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。

  过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。

  情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。

  教学重难点

  教学重点

  探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

  教学难点

  乘法分配律的应用。

  教学工具

  多媒体课件

  教学过程

  一、复习导入

  二、学习乘法交换律和乘法结合律

  1、学习例5。

  (1)出示例5

  (2)学生在练习本上独立解决问题。

  (3)引导学生对解决的问题进行汇报。

  4×25=100(人)

  25×4=100(人)

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:交换两个因数的位置,积不变。这叫做乘法交换律。

  能试着用字母表示吗?

  学生汇报字母表示:a×b=b×a

  2、学习例6。

  (1)出示例6

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (25×5)×2 25×(5×2)

  =125×2 =10×25

  =250(桶) =250(桶)

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。

  能试着用字母表示吗?

  学生汇报字母表示:(a×b) ×c=a× (b×c)

  (4)完成例6下面做一做的第一题。

  3、学习例7。

  (1)出示例7。

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

  能试着用字母表示吗?

  学生汇报字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  (4)完成例7下面做一做的第一题。

  3、学习例8。

  (1)出示例8。

  (2)收集信息,明确条件问题

  (3)学生独立思考,尝试解决问题

  (4)读懂过程,感悟不同方法

  课后小结

  今天你有什么收获?

6、苏教数学五年级上《整数乘法运算定律推广到小数》的教学反思

  因为新课程提倡“自主探究、合作交流”的学习方式,结合我校堂构建模式要求的问题“质疑---自解----建构”这一教学模式和10+30,3+1的教学 操作模块,。我将培养学生的自学能力,教会学生探究学习作为最最基本的`目标,这不仅要关注学生掌握知识的多少,更重要的是要关注学生是否亲历探索过程,是 否真正理解数学、是否在思维能力,情感态度和价值观等方面得到发展。我紧紧抓住“推广”两个字进行教学,精心设计了“四巧”即“巧”引入,“巧”探究, “巧”应用,“巧”巩固。课堂上,我没有占用过多的时间去讲解,而是巧妙地点拨、引导。通过本节课的教学实践,我深深地体会到,留给学生自由发展的空间, 学生参与的是获得知识的全过程。不是模仿书本或接受教师提供的现成结论来进行学习,而是自己本人把要学习的东西发现或创造出来,这样他们对所学的知识点就 记得快,记得牢,同时又培养了良好的学习习惯,挖掘了创造潜能。

  没有完美,本课教学完成后的发现不足之一是将定律迁移的过程有些生硬不是那么完美,其二是在验证过程似乎有些单一没有说服力。于是我决定对这两方面进行改进。进行第二次设计。

  将25×95×4 125×( 17×8) 17×25+83×25 直接演变为:2.5×95×0.4 1.25×(17×8) 17×0.25+83×0.25

  四道算式直接加上小数点问学生可以怎样计算,,为什么要这样计算?学生质会质疑,这样更顺利的迁移到小数计算当中。解疑过程让学生每人举一例乘法交换律, 全班六十余人会有六十多种结果但都可以验证小数同样适用。教师还鼓励有新发现的学生。(其实不会有)。另外几种定律也是采取小组先交流再全班汇报。这样一 来突出了验证过程增强了广度。有利于学生掌握用运用。

7、《整数乘法运算定律推广到分数乘法》的教学反思

  面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

  一、注重了情境的导入,提高孩子们的参与热情。

  本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。

  二、鼓励学生大胆的质疑与猜想,激发学生内在的.求知动力。

  在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。

  三、需要改进之处:

  ①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3) 4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。

8、《整数乘法运算定律推广到分数乘法》教学反思

  面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

  一、注重了情境的导入,提高孩子们的参与热情。

  本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的.效果。

  二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。

  在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。

  三、需要改进之处:

  ①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3) 4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。

  ②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。

  总之,通过本节课,使我在教育教学上,在落实新课改的精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。

9、《整数乘法运算定律推广到小数》的教学反思

  1、挖掘教材,让学生真正参与到学习当中。

  在导入部份用一组整数乘法算式让学生进行简便算法,然后,在整数数字中点上小数点,摇身一变成小数乘法,让学生说怎么算?学生直接用上了简便算法,教者提出问题:对于小数乘法,能应用整数乘法运算定律吗?让学生明白,猜想不一定是对的还需验证,然后让学生验证。

  这一设计,充分挖掘了教材的思想,把猜想验证这种科学研究方法恰当的运用到这一教学环节,学生经历了这一过程,收获了一种思想,同时也闪烁着智慧的火花,学生的验证,有的是通过计算两个式子的结果得出的,有的是根据小数点移动引起小数大小的变化验证的,有的是根据小数的性质来验证的,老师不是简单的教教材,而是创造性的使用教材,这样的'设计更符合小学生的思维特点,学生充满求知的欲望。

  2、注重非智力因素,让学生感受成功。

  教者整个课堂感情充沛,处处都闪烁着教者的教学智慧,板书的习题,如看谁算得快,看谁算得巧,一个快字和巧字,体现了教者的用心,快乐填一填,巧手算一算,运气题、眼光题这些习题,无不体现教材对情感的投入;教者对学生的评价,也是一个画在黑板上的笑脸,加上恰当的评价语言,整堂课,学生都感受到老师的点点关注,感受到了一种成功的愉悦。

10、乘法运算定律教学设想与反思

  教学目标:

  1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);

  2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;

  3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。

  教学过程:

  一、比赛激趣,引发猜想

  1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!

  2、教师报题,学生起立抢答。

  3、大家的速度都很快,很难分出高下,下面换一种比赛形式。

  (课件演示:一次性计算两道题,看谁算得既对又快。)

  4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?

  5、引导猜想:a、乘法中可能也有交换律和结合律;

  b、猜想怎么用字母来表示它们。

  {板书猜想结果:乘法交换律乘法结合律

  二、合作探究,举例验证

  1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?

  请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)

  质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)

  那怎么办?需要凝聚大家的力量一起举例!

  2、小组合作验证

  3、归纳两条乘法运算定律的文字叙述内容,揭示课题。

  三、学以致用,加强巩固

  四、课堂小结,拓展延伸

  本课的设计体现了以下几个特点:

  1、创造性地运用教材,落实“三维”教学目标。

  按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。

  2、经历过程,强化体验,落实“三维”教学目标。

  从猜想→验证→应用的整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的欲望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的'自主学习意识,而且学生的参与积极性也会高涨。

  3、科学思想和方法的渗透,落实“三维”教学目标。

  在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。

11、数学四年级下册《乘法运算律》教学反思

  《乘法运算律》这节课我以建构主义学习理论位指导,力求体现“以学生发展为本”的指导思想。基于这种思想,设计课堂教学时,注意了以下几个问题:

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的'感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

12、四年级数学下册《加法的运算定律》教学反思

  《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:

  1.在解决问题的过程中探寻规律。

  英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。”

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的`活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。

  接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  2、对加法结合律的教学看法

  在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。

相关文章

推荐文章