小学五年级《数学分解质因数》教案一等奖设计
1、小学五年级《数学分解质因数》教案一等奖设计
教学内容:分解质因数
教学目标:
1、使学生了解每一个合数,都可以写成几个质数相乘的形式
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
教学过程:
一、复习
学生回答质数的概念,并举例说明
二、引入新课
1、教学例2
把合数10、24和63分别用质因数相乘的.形式表示出来。
10=2×524=2×2×2×363=3×3×7
(1)一个合数可以用几个质数相乘的形式表示
(2)一个合数可以写成几个质数相乘的形式,其中每个
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念
(1)质数,因数,质因数,分解质因数
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3
把15、42、60分解质因数
(1)用短除法分解质因数
(2)什么是短除法
(3)练习,
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习
1、练一练
四、总结归纳,布置作业
反思:我认为这节课最重要的的是:
1、让学生理解短除法的意思。
2、分解质因数的时候,因数必须是质数。
2、小学五年级《数学分解质因数》教案一等奖设计
教学目标
(一)理解质因数、分解质因数的意义。
(二)会把一个合数分解质因数,掌握用短除式分解质因数。
(三)培养学生观察分析,概括的能力。
教学重点和难点
(一)质因数与分解质因数的意义。
(二)用短除式分解质因数。
教学用具
投影片。
教学过程设计
(一)复习准备
1.请说出1~12这些数中的质数和合数。(投影片)
学生口答后,投影出示答案:
①2,3,5,7,11是质数;
②4,6,8,9,10,12是合数。
2.说一说质数与合数的区别?
3.请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?
学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。这节课就来研究要求连乘式子里的因数都是质数的情况。
(二)学习新课
1.质因数的意义,分别质因数的意义和方法。
(1)板书例3 6,28和60可以写成哪几个质数相乘的形式?
教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。
教师:用算式如何表示,学生口答后老师板书;6=2×3。
教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。问:4老师为什么没圈?(4不是质数,继续分解。)
板书;2,2,圈上。请用算式表示。板书;28=2×2×7。
教师:请用上面的方法把60分成几个质数相乘的形式。老师巡视中请一位同学板书出塔式分解式和算式。(如下)
(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。)
教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。)
教师:像这样,把一个合数写成几个质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。板书:质因数。
教师:请说一说什么是质因数。
请说一说上面三个算式中谁是谁的质因数。
针对学生口答,老师说明:讲质因数时,要说出这个质数是哪个合数的质因数,不能单独说一个数是质因数。
教师:(指上面的'式子)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书:分解质因数的意义)这就是这节课研究学习的内容。(板书课题:分解质因数。)
(3)口答练习:(学生口答后老师板书)
把24,36分解质因数。
2.用短除式分解质因数。
教师:为了简便,通常用短除法来分解质因数。
介绍步骤:
第一步,用能整除6的质数2去除,商3;
第二步,3是质数;
第三步,把除数和最后的商相乘。
教师:试用短除式分解28。(学生口答老师板书)
教师:第一步做什么?
14是最后结果吗?第二步做什么?
第三步做什么?
教师:请观察上面两个短除式中的除数和最后的商,都是什么数?(质数。)
(2)请一位同学板书把60分解质因数。其余同学在本上试把18和42分解质因数(两位同学写投影片)。
教师:请观察短除式,第二步与第三步的做法有什么相同点和不同点?
学生讨论后,归纳:这两步除的方法与第一步相同,也就是说那一步除得的商如果是合数,就照同样的方法继续去除,除到最后商为质数为止。
用学生投影片订正把18和42分解质因数的短除式。
(3)谁能说一说用短除式分解质因数的步骤吗?
学生口答后教师归纳。并作简要板书:
第一步:先用一个能整除这个合数的质数(通常从最小的开始)去除;
第二步:看上一步除得的商,如果商是合数,就照上面的方法继续除下去,直到得出的商是质数为止;
第三步:把各个除数和最后的商写成连乘形式。
(三)巩固反馈
1.口答填空。(投影片)
①18的质因数有( );5和7是( )的质因数。
②分解质因数。
2.判断正误。对的画√,错的画×并找出错误原因。(学生用反馈牌)
①2和5是质因数; ( )
②一个合数的约数,就是它的质因数; ( )
③24分解质因数:24=1×2×2×2×3; ( )
④8分解质因数:8=2×2×2; ( )
⑤30分解质因数:30=5×6; ( )
⑥21分解质因数:3×7=21。 ( )
3.用短除式把34,54,72分解质因数。
(四)课堂总结和课后作业
1.质因数,分解质因数。
2.用短除法分解质因数。
2.作业:课本P63练习十三:7,8,9。
课堂教学设计说明
本节内容是在学生已经掌握了求一个数的约数的方法和质数,合数概念的基础上进行的。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识到质因数是一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,归纳分解步骤这几步进行,这样使学生能准确把握住用短除式分解质因数的关键和方法,也培养了学生观察,分析和概括的能力。
新课教学分为两部分。
第一部分学习质因数与分解质因数的意义和方法。共分为三层,写塔式分解式对合数进行分解;归纳质因数,分解质因数的意义;会用塔式分解式分解质因数。
第二部分学习用短除式分解质因数。分为三层。掌握用短除法分解质因数的方法;巩固用短除式分解质因数的方法;归纳用短除法分解质因数的步骤。
板书设计
3、小学五年级《数学分解质因数》教案一等奖设计
学习内容:
人教版小学数学五年级下册第21页第8题、第22页。
学习目标:
1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。
2.我能运用2、5、3的倍数的特征解决问题。
学习重点:
熟练掌握2、5、3的倍数的特征。
学习难点:
运用2、5、3的倍数的特征解决综合问题。
教学过程:
一、导入新课
二、检查独学
1.互动分享独学部分的完成情况。
2.质疑探讨。
三、合作探究
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的.偶数________________
(2)3个5的倍数的奇数________________
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
4、小学五年级《数学分解质因数》教案一等奖设计
教学过程:
一、 创设生活情境
1、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?
学生说出:用边长1分米的正方形地面砖铺地。 12分米
师:怎么铺?会多出来吗? 18分米
学生说出:每行铺18快,铺12行,不会多出来。
师:有没有其它铺的方法?
学生说出:我用边长2 分米的正方形地面砖铺。
师:怎么铺?
学生说出:每行铺9快,铺6行。
师:有没有其它铺的方法?
学生说出:我用边长3分米的正方形地面砖铺,每行6块,铺4行,也正好。
学生还可能说出:用边长4分米的正方形地面砖铺地。
让学生小组讨论:按要求能不能铺?让学生明确要锯分铺了。
师:还有其它铺的方法吗?
让学生说出:还可以用边长6分米的正方形铺地,每行3块,铺2行。
师:哦,原来小红家卫生间有这么多的铺法?
小红爸爸要铺得快一点,那一种铺法最好?
[设计意图:课始,创设生活情境,将学生有然地带入求知的情境中去,通过设疑,让学生从这些生活情境中提出问题。创设这样的`情境,一是调动学生的学习兴趣、感受到数学与生活的密切联系;二是初步培养学生提出问题、解决问题的能力。这样既激发了学生探求知识的欲望,同时又为后面解决问题提供了学习的目标。]
二、引导自主探索
1、自主探索、形成概念
师:那我还要问一问,你们是怎么想出可以用边长是1、2、3、6分米的正方形地面砖铺呢?
让学生说出:①1、2、3、6都是18的因数,又都是12的因数
②1、2、3、6是18和12的公有的因数
师:18的因数和12的因数有几个?能举完吗?
让学生说出:能,只有4个,个数是有限的
师:我们可以把这4个数叫做18和12的公因数,最大的一个是几?
师:谁给它起个名字?
由此引出最大公因数的概念。
[设计意图:在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。]
2、观察发现、探索方法
出示例4:8和12的公因数有那些?最大公因数是几?
师:你能用那些方法解决这个问题?小组讨论;
让小组代表逐一汇报:
方法1:8的因数:1、2、4、8 ; 12的因数:1、2、3、4、6、12
8和12的公因数有:1、2、4;最大的公因数是4
方法2:先找8的因数,再从8的因数中找出12的因数
8的因数:1、2、4、8其中1、2、4也是12的因数
8和12的公因数有:1、2、4;最大的公因数是4
方法3:把8和12用几个素数的乘积来表示:8=2×2×2 ;12=2×2×3
8和12的公因数有:1、2、4;最大的公因数是2×2=4
……
师:还可以用下面的图来表示:
[设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”在教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。]
5、小学五年级《数学分解质因数》教案一等奖设计
学习内容:
人教版小学数学五年级下册教材第12—13页。
学习目标:
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的。
学习重点:
理解因数和倍数的含义,掌握求一个数的因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的因数和这里讲的`因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
6、五年级数学下册《分解质因数》教学反思
有以下几个问题值得反思:
第一,质因数、分解质因数的意义和用短除法分解质因数的教学落实不到位。
通过学生的观察发现,引出了质因数的定义后,学生对质因数的理解还是可以的,但对分解质因数的意义就处理得不够好,我只是通过60=2×2×3×5这个例子指出60这个合数可以通过2、3、5这几个60的质因数相乘的形式表示出来,像这样的表示方法就叫做分解质因数,接着课件显示分解质因数的意义,指出分解质因数的书写格式要注意的地方后就直接进入几个式子是否是分解质因数的判断练习。其实在练习之前,我还可以抓住质因数和分解质因数这两个意义的重点词提出质因数和分解质因数是两个不同的概念,指出质因数是一个质数,这个质数是对应合数的因数,而分解质因数是一个合数的表示形式,是用几个质因数想乘的形式表示一个合数。经过这一强调后再来做相关练习可能效果会更好。
第二,要明白什么时候该老师讲,什么时候该学生讲。在教学短除法分解质因数时,我本来的设想是想让学生去说,想经过他们的思考去认识短除法分解质因数的一般规律,这样印象会更深刻。想不到这种方法并没有收到很好的效果,即使后来老师的点评中也强调了各步骤中的细节问题,但在学生练习时还是出现了很多问题。所以像短除法这样操作性步骤性强的基础性的知识,刚开始还是由老师来讲解比较好,因为学生的第一印象很重要,最初灌输的知识它们很快就会定型,所以繁琐性的问题还是由老师讲比较好。但如果是学生完全可以通过观察发现的知识点,还要由学生自己去发现,老师作引导便可。
第三,清楚课堂上学生才是主角,多给学生展示的机会。在学生回答问题时,没有给太多的时间让学生思考,有几次在发现学生迟疑了一点,我就会忍不住提示他。整节课下来,个人感觉也是我讲得多,学生讲得少。用拍电影做个比喻,老师既是编剧,又是导演,更身担策划,舞台设计等多重身份,但即使这样,主角永远都是学生,学生才是学习的主体。在学生学习过程中,老师只起到穿针引线的作用。时刻记住要把学习的主动权还给学生。
7、五年级数学下册《分解质因数》的教学反思
分解质因数是五年级第三单元倍数和因数中的内容,是在因数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。分解质因数是求最大公约数、最小公倍数以及约分、通分的基础。在整个教学过程中,我感觉设计还算流畅,但在个别环节的处理上还是存在一些问题的。课后,经过听课教师的评议及个人总结,感觉有以下几点值得反思:
一、质因数概念揭示有些“蜻蜓点水”,落实得不够扎实到位。
通过学生自主探究将60写成几个因数相乘的形式,这一环节后,让学生观察式子发现其中的特殊性,这些都引导的较为恰到好处。可之后就匆忙地揭示了质因数的概念,开始进行下一环节了。这样一来学生对质因数的概念只是理论上的了解,而没有实质上的应用。所以,应将揭示质因数概念环节放到举例完成后再进行,让学生观察所有的式子,再说说这些式子有什么特点。学生会说道:所有的式子中因数都是质数。此时再揭示质因数的概念,同时加入让学生找质因数的环节。在此,教师可先以“60”为例找出其质因数,说明2、2、3、5都是60的质因数,其中虽然“2”出现了两次,但不能只说一个。之后,再将举例环节中学生所举出的一些例子做为训练点,再让学生去找每个合数的质因数,这样学生对质因数的理解就更扎实到位了。
二、在小组合作时,没有合理化的利用时间,有些拖沓。
在小组合作举例说明时,本想给学生充足的时间去举例验证,让学生在实践中自己找到答案。由于所要求每组举例的个数有些多,班内学生又比较多,这样一来,无论是小组讨论环节还是汇报环节都耽误了不少时间,以至于后面的环节有些拥挤,甚而没有了更多练习的时间。在此应要求举3个例子即可,这样还可以均出时间给更多小组汇报的机会,以此来充实例子进行总结,效果会更好。
三、没有利用好学生课堂生成的问题去辅助教学。
在小组合作举例环节,学生在汇报时式子中出现了合数,可教师却没有及时的.发现,失去了一次实例教学的机会。如果当时能够及时发现,引导学生讨论,相信学生会对分解质因数的概念有更进一步的理解,也会对学生后期的应用练习起到警示的作用,就不会在后续的练习中屡屡出现有合数的现象了。
四、教学短除法环节处理较好,引导到位。
在教学短除法时,由于短除法是学生新接触的内容,而且只是一种特定方法而已,在未接触时学生是没有探究能力的,所以采取先由教师利用最简单的例子介绍讲解方法,再由学生探究难点的教学方法来进行。教师先以“6”为例,讲解短除法,只除一步即可,之后写成式子。再举出“18”为例,让学生按刚刚所讲的方法来叙述,学生在叙述完这一步之后就出现了问题“商是9,是否停止?”让学生讨论明白:9是一个合数,还要象上面这样继续除下去,直到商是质数为止。这样,学生对短除理解掌握就更深刻了。接着再紧跟练习,进行尝试训练,由此了解学生掌握情况,再针对所出现的问题进行补充教学。这样,既体现了学生学习的主体作用,又体现了教师的主导作用;既突破了方法教学的难点,又让学生很自然的掌握了方法,效果较好。
总体来说,这节课在整个教学设计上环节清晰紧凑,教师在课堂上语言简练,评价到们,引导适度,但在重难点突破上有些急于求成,希望自己在今后的教学中,能够扬长避短,逐步提高自己的教学水平,实现有效、高效地教学,让自己的教学能力再上新台阶。
8、小学数学五年级下册《因数与倍数》教学反思
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。因此,在教学中,我有两点最深的体会:研读教材,走进去;活用教材,走出来。《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如a÷b=n表示a能被b整除,b能整除a。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。
教材上,探究因数这部分的'例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出30和36的因数,达到了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,符合了学生的认知规律。
教材在编排上虽然对于学生来说更容易理解和掌握。但这部分内容学生毕竟初次接触,对于学生来说还是比较难掌握的内容。本来计划因数与倍数(12-14页)一节课讲完,实际操作一节课只能揭示出因数与倍数的概念、求一个数的因数的方法、一个数的因数的特征(12-13页)。下课后,与 成老师交流,她与我有同感。可从各种资料上看了许多教学设计,都是在一节课讲3页,我想,新内容概念多,一节课讲完,学生确实吃不消。俗话说:“磨刀不误砍柴工”打好前面的知识基础,第二课时讲求一个数的倍数的方法以及一个数的倍数特征自然可以放手让学生自己去探究,并且还有充足的时间对求一个数的因数的方法、一个数的因数的特征和求一个数的倍数的方法、一个数的倍数特征进行对比,从而强化所学知识。
所以我认为,课堂容量大就不可避免地造成缺少当堂反馈的时间,过大的容量使学生学的不够深入。我们教师总是想在一节课中让学生掌握尽量多的知识,其实这样反而会减少学生的思考时间,也使老师无法照顾差生,知道差生接受的程度,今后要多思考怎样合理安排。
9、五年级数学《公因数和最大公因数》教学反思
教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的.意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
10、五年级数学《最大公因数》教学反思
本节课,我从学生已有的知识和经验出发,精心设计一个童话情境,激发了学生的学习欲望。先让学生动手操作、自学讨论,帮助王叔叔选择地板砖。再思考探索正方形地板砖的边长与长方形地面的长、宽之间的关系。然后用问题的形式,通过复习16和12的因数,让学生再找两个数的因数、找两个数的公有的因数、找两个数公有的因数中最大的因数的过程中,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系,同时揭示公因数和最大公因数的概念。
总之,我在教学的过程中,不但复习巩固旧知,让学生在不知不觉中学会了新知。而且还让学生带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释。此过程中我还注意了鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,对于有困难的学生,我从方法上作进一步指导,小组长帮助,生生互帮等。以“学生是学习的主人,教师是数学学习的组织者、引导者与合作者为主。培养了学生动手操作的能力,使他们在愉快的学习氛围中学会了本节课的内容。
11、五年级数学《最大公因数》教学反思
一、,找一个数的因数
要成对找,这在教学因数时就是一个难点。
二、教学例题3时,应先组织学生大胆猜测:“哪种纸片能正好铺满这个长方形?”再让学生实践验证。
猜测、验证的过程是学生进行探究活动的必要途径。在实践验证的过程中,我紧扣用边长( )厘米的正方形铺长方形,能铺( )层,每层铺( )个。并与其中有两种正方形不能正好铺满长方形的情况作比较,组织学生交流:“怎样的正方形才能正好铺满这个长方形?”由于前面铺垫充分,学生很顺利地得出了结论。例题3的教学, “哪种哪种纸片能正好铺满这个长方形?”“还有哪些边长整厘米数的正方形能正好铺满这个长方形?”“任何两个数的公因数个数都是有限的吗?”将学生的思维一步步引向深入,就能激发学生自主探究的热情。
三、教学例4时,应充分放手让学生探索8和12的公因数以及最大公因数。
交流中,应充分肯定学生的方法,学生在交流中出现问题时,应让他们自我修正,自我完善。并对四种方法进行比较“看哪种方法更便捷”。最大公因数的概念也要通过练习,让学生自己谈对最大公因数的感悟。