教案

苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

2023-09-04 11:22:12

  苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

1、苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

  苏科版八年级下9.2反比例函数的图象与性质(2)教案

  9.2 反比例函数的图象与性质(3)

  教学目标

  使学生对反比例函数和反比例函数的图象意义加深理解.

  教学重难点

  重点:反比例函数的图象.

  难点:利用反比例函数的图象解题.

  教学过程

  一、情境创设

  反比例函数

  解析式y=kx (k为常数,k≠0)

  图象形状双曲线(以原点为对称中心)

  k>0位置一、三象限

  增减性每一象限内,y随x的增大而减小

  k<0位置二、四象限

  增减性每一象限内,y随x的增大而增大

  二、例题讲解

  例1. 如图是反比例函数 的图象的一支。

  (1)函数图象的另一支在第几象限?试求常数m的取值范围;

  (2)点 都在这个反比例函数的图象上,比较 、 、 的大小

  例2. 如图,已知一次函数y=kx+b的图象与反比例函数y= 的图象交于A、B两点, 且点A的横坐标和点B的纵坐标都是-2,

  求:(1)一次函数的解析式;

  (2)△AOB的面积.

  四、课堂练习

  课本P70 练习1、2题

  五、课堂小结

  1. 反比例函数的图象.

  2. 反比例函数的性质.

  六、课堂作业

  课本 P72/ 第5题

  (北师大版)第一章一元一次不等式和一元一次不等式组复习学案

  第一章 一元一次不等式和一元一次不等式组复习(编号:复01)

  一. 知识点回顾

  1. 一般地, 用符号 连接的式子叫做不等式.

  2. 不等式的性质: 不等式的两边都加上(或减去)同一个整式, 不等号的方向 .

  不等式的两边都乘以(或除以)同一个正数, 不等号的方向 .

  不等式的两边都乘以(或除以)同一个负数, 不等号的方向 .

  3. 只含有一个未知数,并且未知数的最高次数是1, 像这样的不等式,叫做 .

  二. 课堂训练( A组)

  1、不等式性质应用若 ,用“>”号或“<”号填空:

  变式训练:已知(2a-1)x<4的解为x> ,则a的取值范围为______

  2、在数轴上表示不等式x-2>0的解集,其中正确的是( )

  3. 如右图,当 时,自变量 的范围是( )

  A、 B、 C、 D、

  4、在平面直角坐标系内,点P( , )在第四象限,则 的取值范围是( )

  A、 B、 C、 D、

  5、“x的2倍与3的差不大于8”列出的不等式是( )

  A.2x-3≤8;B.2x-3≥8; C.2x-3<8;D.2x-3>8

  6.若不等式组 无解,则m的取值范围是( )

  A.m<11B.m>11 C.m≤11D.m≥11

  7、若不等式组 的解集是x>1,则a的取值范围是 。

  8、 求

  7、解不等式组(1) X- 2(x-3) >4 (2)

  三. 课堂训练 (B组)

  5.已知函数y=2x-4,右图是该函数的图象,回答下列问题

  (1)观察图像回答: 当x为什么值时,y>0?

  (2)如果这个函数y的值满足-4≤y≤4,求相应的x的取值范围.

  6. 某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。

  7.某牛奶公司向某地运输一批牛奶,由铁路运输每千克需运费0.58元,由公路运输运费0.28元,另需要补助600元.

  (1) 设该公司运输的这批牛奶为 x千克,选择铁路运输时,所需运费为 元,选择公路运输时,所需费用为 元,请分别写出 , 与x之间的关系式.

  (2) 若公司只支出运费1500元, 则选用哪种运输方式运送的牛奶多? 若公司运送1500kg牛奶,则哪种运输方式所需费用较少?

  四. 课后作业 (自我展现)

  1.下列不等式一定成立的是( )

  A.5a>4aB.x+2<x+3 C.-a>-2aD.

  2.不等式-3x+6>0的非负正整数有( )

  A.1个B.2个 C.3个D.无数多个

  3、已知关于方程3x+a=x-7的根是正数, 那么a的取值范围是 .

  4、已知一次函数y = kx + b 的图象如图所示,当y<0时,

  x的取值范围是 .

  5、不等式 的解集是 ,则a的取值范围是 。

  6. 解不等式组

  (1) (2) (3)

  7. 小明准备用26元买火腿肠和方便面, 已知一根火腿肠2元, 一盒方便面3元,他买了5盒方便面,他还能买多少根火腿肠?

  8、某校今年冬季烧煤取暖时间为4个月,如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨。该校计划每月烧煤多少吨?

  9、某工厂现有甲种原料360kg,乙种原料290 kg,计划利用这两种原料生产A、B两种的产品共50件,生产A、B两种产品用料情况如下表:

  需要用甲原料需要用乙原料

  一件A种产品9 kg3 kg

  一件B种产品4 kg10 kg

  若设生产A产品 件,求 的值,并说明有哪几种符合题意的生产方案。……(共10分题)

  10. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为500元的两家旅行社。经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按7折收费,乙旅行社的优惠条件是:家长和学生都按8折收费,假设这两名家长带领x名学生去旅游, 他们应该选择哪家旅行社?

  勾股定理

  j.Co M

  勾股定理(第二课时)

  编写人:审核人: 日期: 编号: 年级:

  一、学习目标:利用勾股定理解直角三角形

  二、重难点:勾服定理的运用

  三、知识回顾:

  1.在Rt△ABC中∠C=90°,则C2= C=

  b2= b=

  a2= a=

  2.如图在Rt△ABC中∠C=90°,则AB2= AB=

  BC2= BC=

  AC2= AC=

  四、学法指导:课前预习P66-67,小组合作,当堂检测

  例:1.已知在Rt△ABC中∠C=90°,a=3,b=4,求c

  2.求直角三角形中未知边的长度

  3.已知Rt△ABC中∠C=90°,AB=13,BC=5,求AC

  五、小组合作

  1.已知Rt△ABC中,a=8,b=15,求c.

  2.如果一个直角三角形的两边长分别是6cm和8cm,那么这个三角形的周长是多少cm?

  3.如图等边△ABC的边长去6cm.

  (1)求高AD的长。

  (2)求△ABC的面积。

  4.下图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,旗杆有多高呢?你能想个办法吗?请你与同伴交流设计方案?

  小明发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?

  反思:

  轴对称

  课题:12.1.1 轴对称(一)

  目标:

  1、在生活实例中认识轴对称图.

  2、分析轴对称图形,理解轴对称的概念.

  重点:

  轴对称图形的概念.

  教学难点:

  能够识别轴对称图形并找出它的对称轴.

  教学过程

  一、新课引入

  我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐. 轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.

  二、新课讲解:

  出示课本的图片,观察它们都有些什么共同特征.

  这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.

  小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.

  我们的黑板、课桌、椅子等.

  我们的身体,还有飞机、汽车、枫叶等都是对称的.

  如课本的图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?

  窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图14.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.

  结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.

  了解了轴对称图形及其对称轴的概念后,我们来做一做.

  取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.

  结论:位于折痕两侧的图案是对称的,它们可以互相重合.

  由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

  接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

  下列各图,你能找出它们的对称轴吗?

  结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.

  (1) (2) (3) (4) (5)

  展示挂图,大家想一想,你发现了什么?

  像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

  随堂练习

  (一)课本P117练习 (二)P118练习

  三、课堂小结:

  这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.

  四、作业

  (一)课本习题14.1─1、2、6、7、8题.

  课后作业:

  课本P118思考.

  成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?

  过程:在硬纸板上画两个成轴对称的图形,再用剪刀将这两个图形剪下来看是否重合.再在硬纸板上画出一个轴对称图形,然后将该图形剪下来,再沿对称轴剪开,看两部分是否能够完全重合. 结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.

  轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.

  轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.

  课题:12.1.2 轴对称(二)

  教学目标:

  1、了解两个图形成轴对称性的性质,了解轴对称图形的性质.

  2、探究线段垂直平分线的性质.

  3、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.

  教学重点:

  1.轴对称的性质.

  2.线段垂直平分线的性质.

  教学难点:

  体验轴对称的特征.

  教学过程:

  一、新课引入:

  上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?

  今天继续来研究轴对称的性质.

  二、新课讲解:

  观看投影并思考.

  如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?

  图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.

  AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?

  △ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.

  对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

  自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.

  我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.

  归纳图形轴对称的性质:

  如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.

  下面我们来探究线段垂直平分线的性质.

  [探究1]

  如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?

  1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…

  2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.

  探究结果:

  线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…

  证明.

  证法一:利用判定两个三角形全等.

  如下图,在△APC和△BPC中,

  △APC≌△BPC PA=PB.

  证法二:利用轴对称性质.

  由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.

  带着探究1的结论我们来看下面的问题.

  [探究2]

  如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?

  活动:

  1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.

  2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?

  探究过程:

  1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.

  2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.

  探究结论:

  与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.

  [师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.

  随堂练习

  课本P121练习 1、2.

  三、课堂小结

  这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.

  四、课后作业

  (一)课本习题14.1─3、4、9题.

  课题12.2 轴对称变换

  教学目标:

  1、通过实际操作,了解什么叫做轴对称变换.

  2、如何作出一个图形关于一条直线的轴对称图形.

  教学重点:

  1、轴对称变换的定义.

  2、能够按要求作出简单平面图形经过轴对称后的图形.

  教学难点:

  1、作出简单平面图形关于直线的轴对称图形.

  2、利用轴对称进行一些图案设计.

  教学过程:

  一、新课引入:

  在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.

  将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.

  准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.

  这节课我们就是来作简单平面图形经过轴对称后的图形.

  二、新课讲解:

  由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.

  类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.

  对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.

  下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.

  结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

  连结任意一对对应点的线段被对称轴垂直平分.

  我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.

  成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

  取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.

  (1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由.

  (2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?

  (3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.

  注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.

  随堂练习:

  (一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).

  (1)猜一猜,将纸打开后,你会得到怎样的图形?

  (2)这个图形有几条对称轴?

  (3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

  答案:(1)轴对称图形.

  (2)这个图形至少有3条对称轴.

  (3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.

  三、课堂小结

  本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.

  动手并思考

  (一)如下图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.

  (1)你会得怎样的图案?先猜一猜,再做一做.

  (2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.

  (3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为什么?

  (4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?

  答案:(1)得到一个有2条对称轴的图形.

  (2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)中的图案一定有2条对称轴.

  (3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.

  (4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,剪出的图案至少有4条对称轴.

  (二)自己设计并制作一个花边.

  四、作业:

  如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.

  过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.

  结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.

  “十字”可以折叠两次,剪出它的四分之一即可.

  课题:12.2 .2 用坐标表示轴对称

  教学目标:

  在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形

  教学重点:

  用坐标表示轴对称

  教学难点

  利用转化的思想,确定能代表轴对称图形的关键点

  教学过程:

  一、新课引入:

  复习轴对称图形的有关性质

  二、新课讲解:

  1、学生探索:

  点(x,y)关于x轴对称的点的坐标(x,-y);点(x,y)关于y轴对称的点的坐标(-x,y);点 (x,y)关于原点对称的点的坐标(-x,-y)

  2、例3 四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.

  (1)归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;

  (2)学生画图

  (3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形.

  3、探究问题

  分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?

  (1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系

  (2)若△P Q R 中P (x ,y )关于x=1(记为m)轴对称的点的坐标P (x ,y ) ,

  则 ,y = y .

  若△P Q R 中P (x ,y )关于y=-1(记为n)轴对称的点的坐标P (x ,y ) ,

  则x = x , =n.

  训练:课本135页的第1~3题

  三、课堂小结:

  关于Y轴对称和关于X轴对称的两点的坐标有什么特点?

  四、作业:课本136页的第5~7题

  课题:12.3.1.1 等腰三角形

  教学目标:

  1、等腰三角形的概念.

  2、等腰三角形的性质.

  3、等腰三角形的概念及性质的应用.

  教学重点:

  1、等腰三角形的概念及性质.

  2、等腰三角形性质的应用.

  教学难点:

  等腰三角形三线合一的性质的理解及其应用.

  教学过程:

  一、新课引入:

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是.

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

  二、新课讲解:

  要求学生通过自己的思考来做一个等腰三角形.

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴.

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”).

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数.

  分析:

  根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角.

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则

  ∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.

  在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [师]下面我们通过练习来巩固这节课所学的知识.

  随堂练习

  (一)课本P141练习 1、2、3.

  (二)阅读课本P138~P140,然后小结.

  三、课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

  四、作业

  (一)课本P147─1、3、4、8题.

  参考练习

  一、选择题

  1.如果△ABC是轴对称图形,则它的对称轴一定是( )

  A.某一条边上的高; B.某一条边上的中线

  C.平分一角和这个角对边的直线; D.某一个角的平分线

  2.等腰三角形的一个外角是100°,它的顶角的度数是( )

  A.80° B.20° C.80°和20° D.80°或50°

  答案:1.C 2.C

  二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.

  求这个等腰三角形的边长.

  解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得

  2(x+2)+x=16.

  解得x=4.

  所以,等腰三角形的三边长为4cm、6cm和6cm.

  课题:12.3.1.1 等腰三角形(二)

  教学目标:

  1、理解并掌握等腰三角形的判定定理及推论

  2、能利用其性质与判定证明线段或角的相等关系.

  教学重点:

  等腰三角形的判定定理及推论的运用

  教学难点

  正确区分等腰三角形的判定与性质.能够利用等腰三角形的判定定理证明线段的相等关系.

  教学过程:

  一、新课引入:

  复习等腰三角形的性质

  二、新课讲解:

  出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

  1.由性质定理的题设和结论的变化,引出研究的内容??在△ABC中,苦∠B=∠C,则AB= AC吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2.引导学生根据图形,写出已知、求证.

  2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

  4.引导学生说出引例中地质专家的测量方法的根据.

  例题与练习

  1.如图2

  其中△ABC是等腰三角形的是 [ ]

  2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

  ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

  ④若已知 AD=4cm,则BC______cm.

  3.以问题形式引出推论l______.

  4.以问题形式引出推论2______.

  例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

  分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

  练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

  (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

  三、课堂小结

  1.判定一个三角形是等腰三角形有几种方法?

  2.判定一个三角形是等边三角形有几种方法?

  3.等腰三角形的性质定理与判定定理有何关系?

  4.现在证明线段相等问题,一般应从几方面考虑?

  四、作业

  阅读教材

  教材第150页第12题

  课题:12.3.2 等边三角形(一)

  教学目的:

  1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

  2、熟识等边三角形的性质及判定.

  3、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

  教学重点:

  等腰三角形的性质及其应用。

  教学难点:

  简洁的逻辑推理。

  教学过程:

  一、新课引入:

  1.叙述等腰三角形的性质,它是怎么得到的?

  等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

  等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

  2.若等腰三角形的两边长为3和4,则其周长为多少?

  二、新课讲解:

  在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

  等边三角形具有什么性质呢?

  1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

  2.你能否用已知的知识,通过推理得到你的猜想是正确的?

  等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

  3.上面的条件和结论如何叙述?

  等边三角形的各角都相等,并且每一个角都等于60°。

  等边三角形是轴对称图形吗?如果是,有几条对称轴?

  等边三角形也称为正三角形。

  例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

  分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

  问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

  问题2:求∠1是否还有其它方法?

  练习巩固:

  1.判断下列命题,对的打“√”,错的打“×”。

  a.等腰三角形的角平分线,中线和高互相重合( )

  b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

  2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

  三、课堂小结:

  由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

  四、作业

  1.课本P147─7,9

  2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,

  ∠EOD的度数。

  课题:12.3.2.2 等边三角形(二)

  教学目标:

  1、掌握等边三角形的性质和判定方法.

  2、培养分析问题、解决问题的能力.

  教学重点:

  等边三角形的性质和判定方法.

  教学难点:

  等边三角形性质的应用

  教学过程:

  一、新课引入:

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

  二、新课讲解:

  例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

  ①在边AB、AC上分别截取AD=AE.

  ②作∠ADE=60°,D、E分别在边AB、AC上.

  ③过边AB上D点作DE∥BC,交边AC于E点.

  2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  三、课堂小结

  1、等腰三角形和性质

  2、等腰三角形的条件

  四、布置作业

  1.教科书第147页练习1、2

  2.选做题:

  (1)教科书第150页习题14.3第ll题.

  (2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

  课题:12.3.2.1 等边三角形(三)

  教学目标:

  1、掌握等边三角形的性质和判定方法.

  2、培养分析问题、解决问题的能力.

  教学重点:

  等边三角形的性质和判定方法.

  教学难点:

  等边三角形性质的应用

  教学过程

  一、新课引入:

  复习等腰三角形的判定与性质

  二、新课讲解:

  1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

  2.等边三角形的判定:

  三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

  在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

  注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

  3.由学生解答课本148页的例子;

  4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,

  ∠ABC=120o, 求证: AB=2BC

  分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.

  B

  证明: 过A作AE∥BC交BD的延长线于E

  ∵DB⊥BC(已知)

  ∴∠AED=90o (两直线平行内错角相等)

  在△ADE和△CDB中

  ∴△ADE≌△CDB(AAS)

  ∴AE=CB(全等三角形的对应边相等)

  ∵∠ABC=120o,DB⊥BC(已知)

  ∴∠ABD=30o

  在Rt△ABE中,∠ABD=30o

  ∴AE= AB(在直角三角形中,如果一个锐角等于30o,

  那么它所对的直角边等于斜边的一半)

  ∴BC= AB 即AB=2BC

  点评 本题还可过C作CE∥AB

  5、训练:如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM是等边三角形.

  分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC

  证明:∵等边△ABC和等边△DCE,

  ∴BC=AC,CD=CE,(等边三角形的边相等)

  ∠BCA=∠DCE=60o(等边三角形的每个角都是60)

  ∴∠BCE=∠DCA

  ∴△BCE≌△ACD(SAS)

  ∴∠EBC=∠DAC(全等三角形的对应角相等)

  BE=AD(全等三角形的对应边相等)

  又∵BN= BE,AM= AD(中点定义)

  ∴BN=AM

  ∴△NBC≌△MAC(SAS)

  ∴CM=CN(全等三角形的对应边相等)

  ∠ACM=∠BCN(全等三角形的对应角相等)

  ∴∠MCN=∠ACB=60o

  ∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)

  小结

  1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析

  2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.

  三、课堂小结:

  小结本节知识

  四、作业:

  第十四章一次函数

  第十四章 一次函数

  本章小结

  小结1 本章概述

  本章的主要内容包括:变量与函数的概念,函数的三种表示方法,正比例函数和一次函数的概念、图象、性质以及应用举例,用函数观点认识一元一次方程、一元一次不等式以及二元一次方程组,课题学习“选择方案”.

  函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际,而一次函数又是函数中最简单、最基本的函数,它是学习其他函数的基础,所以理解和掌握一次函数的概念、图象和性质至关重要,应认真掌握.

  小结2 本章学习重难点

  【本章重点】理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.利用函数图象解决实际问题,发展数学应用能力,初步体会方程与函数的关系及函数与不等式的关系,从而建立良好的知识联系.

  【本章难点】1.根据题设的条件寻找一次函数关系式,熟练作出一次函数的图象,掌握一次函数的图象和性质,求出一次函数的表达式,会利用函数图象解决实际问题.

  2.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.

  小结3 学法指导

  1.注意从运动变化和联系对应的角度认识函数.

  2.借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体会数学建模思想.

  3.注重数形结合思想在函数学习中的应用.

  4.加强前后知识的联系,体会函数观点的统领作用.

  5.结合课题学习,提高实践意识和综合应用数学知识的能力.

  知识网络结构图

  专题总结及应用

  一、知识性专题

  专题1 函数自变量的取值范围

  【专题解读】 一般地,求自变量的取值范围时应先建立自变量满足的所有不等式,通过解不等式组下结论.

  例1 函数 中,自变量x的取值范围是 ( )

  A.x≠0 B.x≠1

  C.x≠2 D.x≠-2

  分析 由x+2≠0,得x≠-2.故选D.

  例2 函数 中,自变量x的取值范围是 ( )

  A.x≥-1 B.-1<x<2

  C.-1≤x<2 D.x<2

  分析 由 得 即-1≤x<2.故选C.

  专题2 一次函数的定义

  【专题解读】 一次函数一般形如y=kx+b,其中自变量的次数为1,系数不为0,两者缺一不可.

  例3 在一次函数y=(m-3)xm-1+x+3中,符x≠0,则m的值为 .

  分析 由于x≠0,所以当m-1=0,即m=1时,函数关系式为y=x+1.当m-3=0,即m=3时,函数关系式为y=x+3;当m-1=1,即m=2时,函数关系式为y=(m-2)x+3,当m=2时,m-2=0,此时函数不是一次函数.所以m=1或m=3.故填1或3.

  专题3 一次函数的图象及性质

  【专题解读】 一次函数y=kx+b的图象为一条直线,与坐标轴的交点分别为 ,(0,b).它的倾斜程度由k决定,b决定该直线与y轴交点的位置.

  例4 已知一次函数的图象经过(2,5)和(-1,-1)两点.

  (1)画出这个函数的图象;

  (2)求这个一次函数的解析式.

  分析 已知两点可确定一条直线,运用待定系数法即可求出对应的函数关系式.

  解:(1)图象如图14-104所示.

  (2)设函数解析式为y=kx+b,则 解得

  所以函数解析式为y=2x+1.

  二、规律方法专题

  专题4 一次函数与方程(或方程组或不等式)的关系

  【专题解读】 可根据一次函数的图象求出一元一次方程或二元一次方程(组)的解或一元一次不等式的解集,反之,由方程(组)的解也可确定一次函数表达武.

  例5 如图14-105所示,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是 .

  分析 由图象知当x>-2时,y=3x+b对应的y值大于y=ax-3对应的y值,或者y=3x+b的图象在x>-2时位于y=ax-3的图象上方.故填x>-2.

  专题5 一次函数的应用

  【专题解读】在应用一次函数解决实际问题时,关键是将实际问题转化为数学问题.

  例6 假定拖拉机耕地时,每小时的耗油量是个常最,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.

  (1)写出油箱中余油量Q(升)与工作时间t(小时)之间的函数关系式;

  (2)画出函数的图象;

  (3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?

  分析 由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).

  解:(1)设函数关系式为Q=kt+b(k≠0).

  由题意可知 ∴

  ∴余没量Q与时间t之间的函数关系式是Q=-6t+40.

  ∵40-6t≥0,∴t≤ .

  ∴自变量t的取值范围是0≤t≤ .

  (2)当t=0时,Q=40;当t= 时,Q=0.

  得到点(0,40),( ,0).

  连接两点,得出函数Q=-6t+40(0≤t≤ )的图象,如图14-106所示.

  (3)当Q=0时,t= ,那么 -3= (小时).

  ∴拖拉机还能耕地 小时,即3小时40分.

  规律.方法 运用一次函数图象及其性质可以帮助我们解决实际生活中的许多问题,如利润最大、成本最小、话费最省、最佳设计方案等问题,我们应善于总结规律,达到灵活运用的目的.

  三、思想方法专题

  专题6 函数思想

  【专题解读】 函数思想就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数思想可以解决许多数学问题.

  例7 利用图象解二元一次方程组

  分析 方程组中的两个方程均为关于x,y的二元一次方程,可以转化为y关于x的函数.由①得y=2x-2,由②得y=-x-5,实质上是两个y关于x的一次函数,在平面直角坐标系中画出它们的图象,可确定它们的交点坐标,即可求出方程组的解.

  解:由①得y=2x-2,

  由②得y=-x-5.

  在平面直角坐标系中画出一次函数y=2x-2,y=-x-5的图象,如图14-107所示.

  观察图象可知,直线y=2x-2与直线y=-x-5的交点坐标是(-1,-4).

  ∴原方程组的解是

  规律?方法 解方程组通常用消元法,但如果把方程组中的两个方程看做是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解.

  例8 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了y mL水.

  (1)试写出y与x之间的函数关系式;

  (2)当滴了1620 mL水时,小明离开水龙头几小时?

  分析 已知拧不紧的水龙头每秒滴2滴水,又∵1小时=3600秒,∴1小时滴水(3600×2)滴,又∵每滴水约0.05 mL,每小时约滴水3600×2×0.05=360(mL).

  解:(1)y与x之间的函数关系式为y=360x(x≥0).

  (2)当y=1620时,有360x=1620,∴x=4.5.

  ∴当滴了1620 mL水时,小明离开水龙头4.5小时.

  专题7 数形结合思想

  【专题解读】 数形结合思想是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合思想在解决与函数有关的问题时,能起到事半功倍的作用.

  例9 如图14-108所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A点的坐标为(2,0),且OA=OB,试求一次函数的解析式.

  分析 通过观察图象可以看出,要确定一次函数的关系式,只要确定B点的坐标即可,因为OB=OA=2,所以点B的坐标为(0,-2),再结合A点坐标,即可求出一次函数的关系式.

  解:设一次函数的关系式为y=kx+b(k,b为常数,且k≠0).

  ∵OA=OB,点A的坐标为(2,0),

  ∴点B的坐标为(0,-2).

  ∵点A,B的坐标满足一次函数的关系式y=kx+b,

  ∴一次函数的解析式为y=x-2.

  【解题策略】 利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数问题时有着重要的作用.

  专题8 分类讨论思想

  【专题解读】 分类讨论思想是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论思想既是一种重要的数学思想,又是一种重要的数学方法.分类的关键是根据分类的目的,找出分类的对象.分类既不能重复,也不能遗漏,最后要全面总结.

  例10 在一次遥控车比赛中,电脑记录了速度的变化过程,如图14-109所示,能否用函数关系式表示这段记录?

  分析 根据所给图象及函数图象的增减性,本题要分三种情况进行讨论.电脑记录提供了赛车时间t(s)与赛车速度v(m/s)之间的关系,在10 s内,赛车的速度从0增加到7.5 m/s,又减至0,因此要注意时间对速度的影响.

  解:观察图象可知.

  当t在0~1 s内时,速度v与时间t是正比例函数关系,v=7.5t(0≤t≤1).

  当t在1~8 s内时,速度v保持不变,

  v=7.5(1<t≤8);

  当t在8~10 s内时,速度v与时间t是一次函数关系,设一次函数为v=kt+b(k≠0),又一次函数图象过(8,7.5)和(10,0),

  则 解得

  ∴v=-3.75t+37.5(8<t≤10).

  即

  专题9 方程思想

  【专题解读】 方程思想是指对通过列方程(组)使所求数学问题得解的方法.在函数及其图象中,方程思想的应用主要体现在运用待定系数法确定函数关系式.

  例11 已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象.

  分析 可将由已知条件给出的坐标分别代入y=kx+b中,通过解方程组求出k,b的值,从而确定函数关系式.

  解:由题意可知 ∴

  ∴函数关系式为y=2x+4.图象如图14-110所示.

  2011中考真题精选

  一、选择题

  1. (2011新疆乌鲁木齐,5,4)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为( )

  A、y=2x-1B、y=2x-2 C、y=2x+1D、y=2x+2

  考点:一次函数图象与几何变换。

  专题:探究型。

  分析:根据函数图象平移的法则进行解答即可.

  解答:解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x-1),

  即y=2x-2.

  故选B.

  点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.

  2. (2011南昌,8,3分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是( )

  A.?2 B.?1 C.0 D.2

  考点:一次函数图象与系数的关系.

  专题:探究型.

  分析:根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.

  解答:解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.

  点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当b<0时,函数图象与y轴相较于负半轴.

  3. (2011陕西,4,3分)下列四个点,在正比例函数 的图像上的点是( )

  A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)

  考点:一次函数图象上点的坐标特征。

  专题:函数思想。

  分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知 是定值.

  解答:解:由 ,得 =? ; A、∵ = ,故本选项错误; B、∵ = ,故本选项错误; C、∵ =? ,故本选项错误; D、∵ =? ,故本选项正确;

  故选D.

  点评:本题考查了正比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.

  4. (2011?台湾1,4分)坐标平面上,若点(3,b)在方程式3y=2x?9的图形上,则b值为何( )

  A、?1B、2 C、3D、9

  考点:一次函数图象上点的坐标特征。

  专题:计算题。

  分析:利用一次函数图象上点的坐标性质,将点(3,b)代入即可得出b的值.

  解答:解:把点(3,b)代入3y=2x?9,得:b=?1.

  故选A.

  点评:本题考查的知识点是:在这条直线上的点的坐标一定适合这条直线的解析式.

  5.(2011台湾,9,4分)如图的坐标平面上,有一条通过点(-3,-2)的直线L.若四点(-2,a).(0,b).(c,0).(d,-1)在L上,则下列数值的判断,何者正确( )

  A.a=3 B.b>-2 C.c<-3 D.d=2

  考点:一次函数图象上点的坐标特征。

  专题:数形结合。

  分析:根据函数的图象可判断出函数的增减性,从而结合选项即可判断各选项正确与否.

  解答:解:由题意得:此函数为减函数,

  A.-2>-3,故a<-2,故本选项错误;

  B.-3<0,故-2>b,故本选项错误;

  C.0>-2,故c<-3,故本选项正确;

  D.-1>-2,故b<-3,故本选项错误.

  故选C.

  点评:本题考查一次函数图象上点的坐标特征,解答本题的关键是掌握函数的增减性,另外本题还可以利用特殊值设出符合题意的函数解析式,然后代入判断.

  6. (2011重庆江津区,4,4分)直线y=x?1的图象经过的象限是( )

  A、第一、二、三象限B、第一、二、四象限

  C、第二、三、四象限D、第一、三、四象限

  考点:一次函数的性质。

  专题:计算题。

  分析:由y=x?1可知直线与y轴交于(0,?1)点,且y随x的增大而增大,可判断直线所经过的象限.

  解答:解:直线y=x?1与y轴交于(0,?1)点,且k=1>0,y随x的增大而增大,

  ∴直线y=x?1的图象经过第一、三、四象限.

  故选D.

  点评:本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.

  7. (2011湖北咸宁,8,3分)如图,在平面直角坐标系中,□OABC的顶点A在 轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将□OABC分割成面积相等的两部分,则直线l的函数解析式是( )

  A、y=x+1B、 C、y=3x?3D、y=x?1

  考点:待定系数法求一次函数解析式;平行四边形的性质;中心对称。

  分析:首先根据条件l经过点D(1,0),且将?OABC分割成面积相等的两部分,求出E点坐标,然后设出函数关系式,再利用待定系数法把D,E两点坐标代入函数解析式,可得到答案.

  解答:解:设D(1,0),

  ∵线l经过点D(1,0),且将?OABC分割成面积相等的两部分,

  ∴OD=OE=1,

  ∵顶点B的坐标为(6,4).

  ∴E(5,4)

  设直线l的函数解析式是y=kx+b,

  ∵图象过D(1,0),E(5,4),

  解得: ,

  ∴直线l的函数解析式是y=x?1.

  故选D.

  点评:此题主要考查了待定系数法求一次函数解析式,解题的关键是求出E点坐标.

  8(2011,台湾省,15,5分)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x?5y+15=0的图形,则此直线为何?( )

  A、L1B、L2

  C、L3D、L4

  考点:一次函数的图象;一次函数图象上点的坐标特征。

  专题:推理填空题。

  分析:求出直线与X、Y轴的交点坐标(0,3),(?5,0),根据图象即可选出答案.

  解答:解:将x=0代入3x?5y+15=0得:y=3,

  ∴方程式3x?5y+15=0的图形与y轴的交点为(0,3),

  将y=0代入3x?5y+15=0得:x=?5,

  ∴方程式3x?5y+15=0的图形与x轴的交点为(?5,0),

  观察图形可得直线L1与x、y轴的交点恰为(?5,0)、(0,3),

  ∴方程式3x?5y+15=0的图形为直线L1.

  故选A.

  点评:本题主要考查对一次函数的图象,一次函数图象上点的坐标特征等知识点的理解和掌握,能根据一次函数的图象进行判断是接此题的关键.

  9. (2011山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是

2、苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

  (一)前提测评

  1.什么叫质量?物理实验中称物体质量常用的工具是什么?

  2.托盘天平测量物体质量前要进行哪些调节?怎么调节?

  答:⑴把天平放在水平台上,把游码放在标尺左端的零刻线处。

  ⑵调天平横梁平衡,根据指针在分度盘上的位置调节横梁右端的平衡螺母,直到指针指在中线处或指针在中线处左右摆动的刻度相等为止。

  3.用天平测物体质量时,被测物体放在哪一盘上?砝码放在哪一盘上?

  4.一般按什么顺序加减砝码?在什么情况下移动游码?

  答:⑴估计被测物体的质量后,接从大到小的顺序加减砝码。

  ⑵增加一个最小的砝码时,指针偏向分度盘中线右边,而减少一个最小的砝码时,指针偏向分度盘中线左边,此时不加砝码而移动游码使天平平衡。

  5.怎样读出被测物体的质量?

  答:被测物体的质量等于右盘中砝码的总质量再加上游码指示的质量数。

  7.怎样确定天平的最大称量值?

  答:⑴根据天平底座上的铭牌的.标称确定。

  ⑵根据天平配套的砝码的总质量数及标尺示数估计。

  8.使用天平时要注意哪几个问题?

  (二)以学定教

  实验活动:测量一枚大头针的质量

  导入:对话:

  生1:只要把一枚大头针放到天平上称就行了。

  生2:应该在托盘上多放一些大头针来称。

  生3:应先测一空杯质量,再将一枚大头针放入空杯中测出总质量,两次测量结果相减即得大头针质量。

  教师指导:

  1、阅读实验要求。

  2、讨论:上述三个同学哪个方法正确?为什么?

  3、了解实验的目的、器材。

  4、设计实验步骤。

  5、设计实验记录表格。

  序号数量总质量单个质量

  6、学生进行实验操作,师检查、指导

  要求:以小组为单位,讨论后动手实验,也可以边做边商量,看哪组实验做得又快又好。做完实验后思考,针对上面实验设计提出有关问题,其他组对提出的问题进行抢答,若某组抢答不完善,其他组可继续抢答,抢答完毕继续自由提问,再抢答,直至完毕。

  组长评价:①如果都动手实验,可获1颗红五角星;②如果实验有一半以上的同学成功,再加获1颗红五角星;③提出问题或抢答成功的组,按评价小组的评价再加获红五星。7、引导学生归纳、总结:让学生体验到测量微小物体的质量可以采用测多算少的方法(累积法),此结论应由学生直接去体验。

  8、各组交流实验数据。如果偏差较大,要分析原因。

  9、讨论:怎样测量一个微小物体的质量?以前哪些实验用过同样的方法?还有哪些物体的质量也要用这种方法

3、苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

  一、教学设计思路

  1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

  2、对教材的分析

  (1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

  (2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

  (3)难点:探索并掌握反比例函数的主要性质。

  二、教学过程

  (一)作图象,试比较

  1、提问:

  (1)=4/x是什么函数?你会作反比例函数的图象吗?

  (2)作图的步骤是怎样的

  (3)填写电脑上的表格,开始在坐标纸上描点连线。

  2、按照上述方法作=—4/x的图象

  3、对照你所作的两个函数图象,找一下它们的相同点和不同点。

  (二)细观察,找规律

  1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

  2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

  3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

  (1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。

  (2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

  (三)用规律,练一练

  1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。

  2、判断一位同学画的反比例函数的图象是否正确。

  3、下列函数中,其图象位于第一、三象限的有哪几个?在其图象所在象限内,的值随x的增大而增大的有哪几个?

  (四)想一想,作小结

  (五)作业

  课本137页第1题、141页第2题

4、苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

  教学目标

  使学生对反比例函数和反比例函数的图象意义加深理解。

  教学重难点

  重点:反比例函数的图象。

  难点:利用反比例函数的图象解题。

  教学过程

  一、情境创设

  反比例函数

  解析式y=kx(k为常数,k≠0)

  图象形状双曲线(以原点为对称中心)

  k>0位置一、三象限

  增减性每一象限内,y随x的增大而减小

  k<0位置二、四象限

  增减性每一象限内,y随x的'增大而增大

  二、例题讲解

  例1、如图是反比例函数的图象的一支。

  (1)函数图象的另一支在第几象限?试求常数m的取值范围;

  (2)点都在这个反比例函数的图象上,比较xx的大小

  例2、如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是—2,

  求:(1)一次函数的解析式;

  (2)△AOB的面积。

  三、课堂练习

  课本P70练习1、2题

  四、课堂小结

  1、反比例函数的图象。

  2、反比例函数的性质。

  五、课堂作业

  课本P72/第5题

5、苏科版八年级下册92反比例函数的图象与性质2教案一等奖设计

  反比例函数的图象与性质

  教学目标

  知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

  2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

  3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

  过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

  情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

  教学重点

  教学难点 1) 重点:画反比例函数图象并认识图象的特点.

  2)难点:画反比例函数图象.

  教学关键 教师画图中要规范,为学生树立一个可以学习的模板

  教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式

  教学手段 教师画图,学生模仿

  教具 三角板,小黑板

  学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法

  教学过程

  (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

  内 容 设计意图

  一:课前检测:

  1.什么叫做反比例函数;

  (一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)

  2.反比例函数的定义中需要注意什么?

  (1)k为常数,k0

  (2)从y= 中可知x作为分母,所以x不能为零.

  二:激发兴趣 导入新课

  问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?

  y=kx+b y=kx

  K0 一、二、三 一、三

  b0 一、三、四

  K0 一、二、四 二、四

  b0 二、三、四

  问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?

  可以

  问题3:画图象的步骤有哪些呢?

  (1)列表

  (2)描点

  (3)连线

  (教学片断:

  师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

  生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

  生:我知道反比例函数的解析式为 且k不等于0

  生:我知道反比例函数的图象是曲线。

  师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

  生:该研究反比例函数图象和性质了。

  师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

  三:探求新知

  学生思考、交流、回答。

  提问:你能画出 的图象吗?

  学生动手画图,相互观摩。

  (1) 列表(取值的特殊与有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  议一议

  (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

  (2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

  (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

  (4)曲线的发展趋势如何?

  曲线无限接近坐标轴但不与坐标轴相交

  学生先分四人小组进行讨论,而后小组汇报

  做一做

  作反比例函数 的图象。

  学生动手画图,相互观摩。

  想一想

  观察 和 的图象,它们有什么相同点和不同点?

  学生小组讨论,弄清上述两个图象的异同点

  相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

  不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

  四:归纳与概括

  反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。

  (1) 当 k0 时,两支曲线分别位于第___、___象限,

  (2) 当 k0 时,两支曲线分别位于第___、___象限.

  五:课堂练习

  (1)

  (2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;

  六:形成性检测

  (1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________

  (2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )

  (A) (B) (C) (D)

  (3)画 和 的图象

  七:反馈拓展

  在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

  八:作业布置

  (1) 作反比例函数y=2/x,y=4/x,y=6/x的图象

  (2) 习题5.2.1

  (3)预习下一节 反比例函数的图象与性质II

  复习上节主要内容

  (3分钟)

  (5分钟)

  运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

  由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

  数学教学重要目的'之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

  数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

  (12分钟)

  引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.

  在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

  注:(1)x取绝对值相等符号相反的数值

  (2) x取值要尽可能多,而且有代表性

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

  (3分钟)

  此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

  (5分钟)

  活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

  (4分钟)

  培养学生归纳,语言表达能力

  此中注意分类讨论思想的应用

  巩固反比例函数图象性质

  (2分钟)

  与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

  (5分钟)

  这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

  (4分钟)

  此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

  (1分钟)

  巩固作反比例函数图象的步骤,预习下一节课内容

  教学反思与检讨:

  本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

  由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

  在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

  反比例函数的图象与性质

  一:画出 的图象

  (1)列表(取值的特殊与有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  注:(1)x取绝对值相等符号相反的数值

  (2)x取值要尽可能多,而且有代表性 三:练习

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  二:反比例函数的图象y = 是由两支曲线组成的。

  (1) 当 k0 时,两支曲线分别位于第一、三象限,

  (2) 当 k0 时,两支曲线分别位于第二、四象限.

6、八年级数学《一次函数y=kx+b(k≠0)的图象与性质》教学反思

  函数的学习是初中阶段学习的重要内容之一,而一次函数在教材中的位置又是起着承前启后的重要作用。一次函数y=kx+b(k≠0)的图象与性质这一节课主要是指导学生可以通过画一次函数的大致图象很快分析出一次函数图象的性质。所谓大致图象是指能大致表示函数与两坐标轴交点是在原点、正或负半轴,以及函数的分布和增减性。

  画函数图象时,我形象地将它比喻成一个人沿着x轴的正方向行走当k>0时他就是上坡,当k<0时便下坡。课件形象地展示一次函数的图象分布和增减性的分析后,学生基本都能按先确定b的位置,根据上下坡的形象比喻画出函数的大致图象,从而说出图象的分布。

  练习:直线y=kx+b不经过第二象限,则k,b。

  在这之前我已经用课件展示了b和k是确定图象的不同分布规律。这一题让学生分组讨论,然后上黑板画出所有的`情况。有一组的结果如下图:

  前三种是意料之中的,能考虑到第三种的同学已经很不错了,因为题目中并没有说明是一次函数y=kx+b(k≠0),第三种便是k=0时的常值函数的图像,关键是第四种的确也是一条直线没有过第二象限,这一组的结果赢得了全班同学的掌声,我在及时表扬了学生的聪明以后,告诉学生第四种情况不在这一题的考虑范围内。当即台下一片哗然,学生兴趣高涨,质疑声四起,我马上趁热打铁:“在学习常值函数时提到过,第四种是x=a(a>0,a为常数),这种情况中y是自变量,x是变量,所以这道题只有前三种情况。”“老师,那么答案就是k≥0且b≤0。”“对的!”我迫不及待地肯定了这位同学。“可是老师当k=0且b=0时又是什么情况,这里他们只画出了三种k>0且b=0,k>0且b<0,k=0且b<0?”又一位学生提出了质疑!全班同学安静了也不过三秒钟,马上有同学说到“那不就是直线y=0,它是和x轴重合的一条直线,坐标轴不属于任何象限,那么这条直线就没有经过第二象限。”这一题学生通过积极参与数学学习和解决问题的活动,培养了学生积极探究的态度、独立思考的习惯、实事求是的作风,发扬了团结协作的精神、体会到了集体的力量是强大的。

  当学生完成讨论后,我悬着的心终于放下了,学生真的很了不起,他们用自己思考问题的方法和角度还能弥补老师在备课时没有想到的第四种图形。每一个学生都有成功的潜能,更何况我有53个学生。老师要想驾驭课堂,一定要充分理解学生、信任学生,要做到对学生“收”“放”自如。教师所想并非学生所想,课堂是属于学生的,教师的舞台是学生给的,要有学生的智慧我们课才能更完善。教学的过程的实质是师生共同的拥有学习过程,我们必须给学生充分的发言权、想像的空间、表达自己观点的机会。正所谓教学相长,通过交流也能让师生共同体会其中的乐趣。这节课也真正地尊重了学生,超出我的想象!

7、《反比例函数的图象和性质》教学反思

  《反比例函数的图象和性质》教学反思1

  这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

  课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的'直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

  在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

  《反比例函数的图象和性质》教学反思2

  利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。

  用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。

  由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。

8、八年级数学上册《函数图象性质》教学反思

  “有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的'值。

  研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。

相关文章

推荐文章