教案

双曲线的几何性质数学教案一等奖设计

2023-08-29 11:22:14

  双曲线的几何性质数学教案一等奖设计

双曲线的几何性质数学教案一等奖设计

1、双曲线的几何性质数学教案一等奖设计

  在教学工作者实际的教学活动中,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编为大家整理的双曲线的几何性质数学教案设计,希望能够帮助到大家。

  双曲线的几何性质(第1课时)

  ㈠课时目标

  1.熟悉双曲线的几何性质。

  2.能理解离心率的大小对双曲线形状的影响。

  3.能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。

  ㈡教学过程

  [情景设置]

  叙述椭圆 的几何性质,并填写下表:

  方程

  性质

  图像(略)

  范围-a≤x≤a,-b≤y≤b

  对称性对称轴、对称中心

  顶点(±a,0)、(±b,0)

  离心率e=(几何意义)

  (三)探索研究

  1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。

  双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的`定义。

  双曲线与椭圆的几何性质对比如下:

  方程

  性质

  图像(略) (略)

  范围-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R

  对称性对称轴、对称中心对称轴、对称中心

  顶点(±a,0)、(±b,0)(-a,0)、(a,0)

  离心率0<e=<1

  e=>1

  下面继续研究离心率的几何意义:

  (a、b、c、e关系:c2=a2+b2, e=>1)

  2。渐近线的发现与论证

  根据椭圆的上述四个性质,能较为准确地把 画出来吗?(能)

  根据上述双曲线的四个性质,能较为准确地把 画出来吗?(不能)

  通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。

  我们能较为准确地画出曲线y=,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y=的渐近线。

  问:双曲线 有没有渐近线呢?若有,又该是怎样的直线呢?

  引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:

  y=± =±

  当x无限增大时, 就无限趋近于零,也就是说,这是双曲线y=±

  与直线y=± 无限接近。

  这使我们猜想直线y=± 为双曲线的渐近线。

  直线y=± 恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。

  证法1:如图,设M(x0,y0)为第一象限内双曲线 上的仍一点,则

  y0= ,M(x0,y0)到渐近线ay-bx=0的距离为:

  ∣MQ∣= =

  = .

  点M向远处运动, x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于 y=

  故把y=± 叫做双曲线 的渐近线。

  3.离心率的几何意义

  ∵e=,c>a, ∴e>1由等式c2-a2=b2,可得 ===

  e越小(接近于1) 越接近于0,双曲线开口越小(扁狭)

  e越大 越大,双曲线开口越大(开阔)

  4.巩固练习

  求下列双曲线的渐近线方程,并画出双曲线。

  ①4x2-y2=4 ②4x2-y2=-4

  已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程

  ①M(4, ) ②M(4, )

  [知识应用与解题研究]

  例 1 求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

  例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)

  ㈣提炼总结

  1、双曲线的几何性质及a、b、c、e的关系。

  2、渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。

  3、双曲线的几何性质与椭圆的几何性质类似点和不同点。

2、双曲线的几何性质数学教案一等奖设计

  教学目标:

  知识与技能:经历从不同方向观察物体的活动过程,体会出从不同方向看同一物体,可能看到不同的结果;能识别从不同方向看几何体得到相应的平面图形。

  过程与方 法:通过观察能画出不同角度看到的平面图形(三视图)。

  情感态度与价值观:体会视图是描述几何体的重要工具,使学生明白看待事物时,要从多个方面进行。

  教学重点:学会从不同方向看实物的方法,画出三视图。

  教学难点:画出三视图,由三 视图判断几何体。

  教材分析:本节内容是研究立体图形的又一重要手 段,是一种独立的研究方法,与前后知识联系不大,学好本课的关键是尊重视觉效果,把立体图形映射成平面图形,其间要进行三维到二维这一实质性的变化。在由三视图还原立体图形时,更需要一个较长过程,所以本节用学生比较熟悉的几何体来降低难度。

  教学方法:情境引入 合作 探究

  教学准备:课件,多组简单实物、模型。

  课时安排:1课时

  环节 教 师 活 动 学生活动 设 计 意 图

  创

  设

  情

  境 教师播放多媒体课件,演示庐山景观,请学生背诵苏东坡《题西林壁》, 并说说诗中意境。

  并出现:横看成岭侧成峰,

  远近高低各不同。

  不识庐山真面目,

  只缘身在此山中。

  观赏美景

  思考“岭”与“峰”的区别。 跨越学科界限,营造一个崭新的教学学习氛围,并从中挖掘蕴含的数学道理。

  新

  课

  探

  究

  一

  1、教师出示事先准备好的实物组合体,请三名学生分别站在讲台的左侧、右侧和正前方观察,并让他们画出草图,其他学生分成三组,分别对应三个同学,也分别画出 所见图形的草图。

  2、看课本13页“观察与思考”。

  图:

  你能说出情景的先后顺序吗?你是通过哪些特征得出这个结论的?

  总结:通过以前经验,我们可知,从不同的方向看物体,可能看到不同图形。

  3、从实际生活中举例。

  观察,动手画图。

  学生观察图片,把图片按时间先后排序。

  利用身边的事物,有助于学生积极主动参与,激发学生潜能,感受新知。

  让学生感知文本提高自学能力。

  利于拓宽学生思维。

  新

  课

  探

  究

  二 1、感知文本。学生阅读13页“观察与思考2”,

  图:

  2、上升到理性知识:

  (1)从上面看到的图形叫俯视图;

  (2)从左面看到的图形叫左视图;

  (3)右正面看到的图形叫主视图;

  3、练一练:分别画出14页三种立体图形的三视图,并回答课本上 三个问题。(强调上下左右的方位不要出错) 学生阅读,想象。

  学生分组练习,合作交流。 把已有经验重新建构。

  感性知识上升到理性知识 。

  体会学习成果,使学生产生成功的喜 悦。

  新课探究三 1、连线,把左面的三视图与右边的立体图形连接起来。

  主视图 俯视图 左视图 立体图形

  2、归纳:多媒体课件演示

  先由其中的两个图为依据,进行组合,用第三个图进行检验。

  学生自己先独立思考,得出答案后,小组之间合作交流,互相评价。

  以小组为单位讨论思考问题的方法。

  把由空间到平面的转化过程逆转回去,充分利用本课前阶段的感知,可以降低难度。

  课堂反馈

  1、考查学生的'基础题。

  2、用小立方体搭成一个几何体,使它的主视图和俯视图如图所示, 搭建这样的几何体,最多需要几个小立方体?至少需要几个小立方体?

  主视图 俯视图 学生独立自检

  学生总结出以俯视图为基础 ,在方格上标出数字。

  简单知识,基本方法的综合

  课堂总结

  1、学习到什么知识?

  2、学习到什么方法?

  3、哪些知识是自己发现的?

  4、哪些知识是讨论得出的?

  学生反思

  归纳 让学生有成功喜悦,重视与他人合作。

  附:板书设计

  1.4 从不同方向看几何体

  教学反思:

  从 苏东坡的诗词《题西林壁》引,配以多彩的画面,为学生营造一个宽松、生动的教学环境。通过学生分组讨论,动手操作,师生、学生之间的合作交流,并辅以多媒体课件的合理应用,让学生完全处于一种高参与状态。最终实现 了素材与实际相结合,经验与挑战相作用,立体与平面相转换。本课中引入了课本中没有而学生也能接受的三个概念:主视图、俯视图、左视图。教者很难把握学生的

3、双曲线的几何性质数学教案一等奖设计

  作为一名教师,常常要写一份优秀的教学设计,借助教学设计可以提高教学效率和教学质量。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的五年级数学下册分数的基本性质的教学设计范文,希望对大家有所帮助。

  教学内容:

  人教版小学数学五年级下册“分数的基本性质”。

  教学目标:

  1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

  2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、受到数学思想的熏陶,养成乐于探究的学习态度。

  教学重、难点:

  理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

  教具准备:

  课件、写有分数的卡片。

  学具准备:

  3张同样大小的卡纸、彩笔。

  教学过程:

  一、基本练习,引入新知

  1、说一说。

  (1)什么是商不变的性质?

  (2)150÷30=(),被除数和除数都扩大4倍,商是();被除数和除数都缩小10倍,商是()。

  2、想一想。

  (1)分数与除法的关系是怎样的?

  (2)1÷2=

  二、创设情境,激趣引入

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的3分之1,老二分到了这块地的6分之2。老三分到了这块的9分之3。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

  三、探究新知,揭示规律

  1、动手操作,形象感知。

  让学生发表自己的意见后,教师请学生拿出3张同样大小的卡纸。师生一起折一折、画一画、剪一剪、比一比、想一想。

  2、观察比较,探究规律。

  这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。

  3、抓住焦点,辨中求真。

  分数的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。分数里分母不能为0,所以分数的分子、分母不能同时乘以0。在除法里0不能做除数,所以分数的分子、分母也不能同时除以0。

  4、抽象概括,总结规律。

  引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。

  5、运用规律,自学例题。

  (1)分组讨论。把和分别化成分母是12而大小不变的.分数。分子应怎样变化?变化的依据是什么?

  (2)汇报讨论情况。

  (3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  四、多层练习,巩固深化

  1、基本练习。根据分数的基本性质,把下列等式补充完整。学生口答后,要求说出是怎样想的。

  2、判断,并说理由。

  3、综合练习。请帮小熊和小山羊找回大小相等的分数。

  4、深化练习。

  5、动脑筋出教室游戏。

  拿出课前发的写有分数的纸片,看清手中的分数,找一人报出自己的分数,与之相等的,和他一起离开教室。

  五、全课小结,形成技能。

  通过这节课的探究学习,你有什么新的收获?

4、双曲线的几何性质数学教案一等奖设计

  教学目标:

  1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学重点:会解决含有加、减号的方程。

  教学难点:理解方程的含义。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20 20+10=20+10

  X=50 X+20=50+20

  50+a=50+a 50+a-a=50+a-a

  X+20=70 X+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得

  的结果仍然是等式。这是等式的性质。

  独立完成练一练第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由

  学生解决,学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未

  知数。

  二是检验:把计算的'结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成试一试练一练的第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的

  地方及时分析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式的性质

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  X+10=50

5、双曲线的几何性质数学教案一等奖设计

  小数的性质

  【教学内容

  九年义务教育六年制小学数学教科书(人教版)第八册第100—101页例1—例4。

  【教材简析

  小数的性质是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。教学时,要通过比较、辨析、抽象、概括等一系列的思维活动,帮助学生理解和掌握小数的性质。

  【教学过程()

  一、创设情境,引导探索

  1.找等量关系。

  教师首先板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)你能想办法使它们相等吗?学生在教师的启发下,回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。板书写成:1分米=10厘米=100毫米。

  2.思考探索。

  (1)你能把它们改用“米”作单位表示吗?

  (2)改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)

  板书如下:

  (3)按箭头所指的方向观察三个小数有什么变化?

  使学生初步认识小数的末尾添上“0”或去掉“0”,小数的大小不变。

  二、观察比较,引导发现

  1.让学生观察投影出示的正方形等分图(见下图),回答老师的提问:

  (1)把这个正方形看作整数“1”,这个正方形平均分成了多少份?(10份)这样的一份用小数表示是多少?(0.1)这样的三份呢?(0.3)叠片演示由图(1)成图(2)。(板书:0.3)

  (2)叠片演示由图(2)成图(3)后问:现在这样来分,把这个正方形平均分成了多少份?(100份)阴影部分占多少份?(30份)用小数表示是多少?(板书:0.30)

  (3)(再次演示叠片图(2)→图(3))小数由0.3到0.30,引导学生去思考:你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  2.引导学生观察等式“0.3=0.30”,从中发现:小数的末尾添上“0”,小数的大小不变。

  教师板书:

  再要求学生从右往左看,发现:小数的末尾去掉“0”,小数的大小不变。(板书)

  3.提醒注意:性质中的`“末尾”跟一般说的“后面”是不同的。

  4.判断练习。

  下面的数中,那些“0”可以去掉?

  3.9 0.300 1.8000 500

  5.780 0.0040 102.020 60.06

  三、推理板书,指导运用

  1.教师结合板书内容讲解性质的运用。

  (1)根据小数的性质,当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)

  化简下面各小数:

  0.40 1.850 2.900 0.50600

  0.090 10.830 12.000 0.070

  引导学生说出化简后的小数是什么?(板书)

  (2)有时根据需要,可以在小数末尾添上“0”。(例如:0.3→0.30)

  出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?

  让学生同桌两人议论后答出。

  提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。

  最后完成如下板书:

  2.学生质疑问难,教师及时释疑。

  四、多层练习,巩固深化

  1.选择题。(在正确答案下面的圈内涂上黑色)

  化简102.020的结果是( )

  12.2 12.02 102.0200 102.02

  ○ ○ ○ ○

  要求学生回答:化简的依据是什么?

  2.判断题。(打“√”,错的打“×”)

  (1)0.080=0.8 ( )

  (2)4.01=4.100 ( )

  (3)6角=0.60元 ( )

  (4)30=30.00 ( )

  (5)小数点后面添上“0”或去掉“0”,小数的大小不变。 ( )

  让学生按顺序回答,并说出判断的依据是什么?

  3.下面的每组数中,一共可以去掉多少个“0”?这些0都在什么位置?

  (1)3.09 0.300 1.8000 5.00

  (2)0.0004 12.002 60.06 500

  (3)0.090 12.00001 0.50605060 30.0

  要求学生思考后,按顺序回答。

  4.(1)改写。

  原数

  0.7

  7

  70

  改写成一位小数

  改写成两位小数

  改写成三位小数

  (2)连线。把相等的数用直线连起来。

  10.01 20.1 4 4.800 50.00 1.60

  50 10.010 16.0 4.0 4.8

  要求学生独立完成,然后抽查评讲,检查全班练习效果。

  5.做游戏。

  (1)智力游戏。谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)

  (2)贴数游戏。让自愿参加的十位学生,每人拿一个数(卡片),教师板书“50.3”,要求学生在“50.3”的下面贴上与它相等的数,不相等的贴在旁边。

  50.03 5.30 5.3 50.300

  50.30 503 50 五十又十分之三

  500.3

  五、课堂作业

  教科书练习二十一第4、5题。

  六、课堂小结

  [围绕性质的内容组织多种形式的练习,加强学生对小数性质的理解运用,练习在游戏时达到高潮。整个教学设计的观点明确,结构严谨,层次分明,使学生步步深入地学好小数的性质。

6、双曲线的简单几何性质的教学反思

  随着课程改革的不断推进,在开展的各种公开课、展示课的活动中,以下三方面的问题引发教师们的更多思考:

  一、教学需要讲求实效

  教学的实效性是课堂的生命线,在学生学习的主战场——课堂,不具有效率就不具有生命力,因此,我们会发现,有些课型只能昙花一现(公开课中),而在常规课堂几乎没有生存空间。

  有效教学要使学生建立良好的知识网络体系。良好知识结构应把知识及知识形成发展的脉络及蕴含的数学思想方法、知识间的内在联系、结论的推导证明线索融合成一个有机整体,也只有这样的知识才有利于转化成长期记忆,才能够在需要时被自如调用。本课突出展现了双曲线几何性质的获得过程,特别是对于教材中出现较为突兀的虚轴和渐近线,从双曲线方程的研究中获得了很好的解释,并把双曲线几何性质及其发现获得的过程用下图展示出来,有利于学生建立双曲线几何性质的良好知识网络,此外,为了加强两种标准位置双曲线几何性质的对比和联系,在小结中又增加了让学生按表格进行梳理的要求。

  有效教学要促进学生迁移运用所学,发展学生学习的积极情感。本课在研究获得双曲线的几何性质后,设计了两项任务:一是自行研究获得双曲线 的几何性质,二是练习题“研究的渐近线”,以此促进学生迁移运用所学的研究方法,加深学生对研究过程的理解和认识,并通过练习题的归纳、发现,激发学生学习的积极情感,感受数学思考发现的快乐。

  有效课堂教学活动在课堂结束时,学生的学习活动不应该停止,而是在解决了原有问题后,引发学生新的思考与发现,课堂的教学应该是为了课下的不教。正常来讲,一个人知道的越多,疑问也就应该越多,需要思考研究的问题也就越多,因此,应该鼓励学生对学习过程中去反思和梳理,发现新的思考探究点,不断扩大自己的认识。本课结尾部分是出于该想法进行设计的,但是在实际教学活动中,由于时间关系,教师只能在拖堂的一分钟时间内匆匆提出,没能给予学生思考时间。

  二、如何摆正教师教的主体和学生学的主体地位?

  从教学的最根本目的“通过教学活动促进学生的发展”来看,这就决定了学生在教学活动中处于最核心的地位,不论是以什么样的教学方式、技巧,其效用的实现,最终都离不开学生主体的心理及思维活动,因此,教师的教必须以学生为出发点,以学生已有认知水平为基础。

  从学生学习的发生条件来看,学生主体的系列心理及思维活动的发生,需要一定的数学学习情境的作用,而数学学习情境作用的大小,又取决于教师能否创设出与学生认知水平相适应的学习情境,因此,学习情境能否成为有效刺激,从而激活学生的数学学习活动(有深层次的数学思维参与)的发生,都有赖于教师教的主体能动性的发挥。

  因此,两个主体的关系概括来讲,就是教师教的主体作用,应体现在如何有效促进学生学习的主体性。由此来看,教师当讲则讲,就不必去忌讳讲解,但是教师讲解的语言要能够揭示出数学的本质,要能体现数学的逻辑的力量,要能够展示数学的魅力。本课在设计过程,一直有一个矛盾,就是既要保证课堂的效率,又要确保学生学习中的发现和研究活动,比如:有些环节让学生去发现是非常困难的,因此需要较多的铺垫和相当充足的时间才可以保证,而我又不想让双曲线的渐近线的学习占用一节课时间,因为按正常课时安排是不允许的,后来在上述思考的基础上,确定了现在的设计:对于学生在现有认知基础上,多数同学可以自主探究获得的双曲线的范围、对称性设计成课前预习探究作业,把双曲线离心率的概念学习和双曲线几何性质的简单应用的例题设计成课后阅读学习,对渐近线的发现、解释、证明设计成教师引导下的探究活动,并把从双曲线方程对渐近线的代数特征解释作为教师讲解,把焦点在y轴上的双曲线几何性质的研究和练习题的解决作为学生迁移运用所学思想方法的实践活动,把反思本课研究过程中产生的疑问与思考作为学有余力的优秀学生的课后施展才能的舞台。

  当然在课堂教学的实际活动中,有一些不尽人意,比如教师在学生课前预习探究成果交流阶段,如果有更好的语言功底,点评能够做到既简洁又准确,就能节省一些时间,结尾部分的反思研究过程,发现新疑问的环节就可以充分一些,但是,总体上讲,课堂容量还是显得有些太大,相对于45分钟课堂来讲太紧张了。

  三、对引导性问题需要精益求精

  由于数学思维就是解决数学问题的心智活动,思维过程中总是表现为不断地提出问题、分析问题和解决问题。因此数学问题是数学思维目的性的体现,也是数学思维活动的核心动力。因此在教学活动中,学生的思维活动主要是在问题的'驱动下进行的。这就决定了合理有效的系列问题设计,和激发疑问生成的情境设计,成为能否有效促进学习主体进行深层次数学思维的关键!

  从数学学习心理学和数学学习的一般规律来看,能有效促进学生数学思维发生的问题应具备如下特点:

  (1)从学生知识可接受性的实际出发,确定合理的难度和适当的思维强度,即,问题使学生处于似会非会、似能解决又不能解决的感觉。

  (2)问题要有利于引起学生的认知冲突和学习心向,激发学生学习兴趣,促进学生积极参与。

  (3)问题的序列设置要使数学内容的呈现合理、自然,有情理之中的感觉,要有利于学生领悟数学的本质,提炼数学思想方法,灵活运用所学。

  (4)从数学方法论的角度出发,问题要具有启发性,如:你认为该问题可能涉及哪些知识?解决该问题需要什么条件?我们还疏漏了什么没有?……促进学生自己提出问题、发现问题,对数学有所感悟,实现学生思维深度参与的自动发生机制。

  (5)问题要有利于引领、促进学生有效反思自己的学习行为,及时整理、内省自己的思维过程,提升对知识、方法的认识。如:问题是怎样得到解决的?使用了哪些思维方法?该问题的解决方法有推广价值吗?可推广到哪些方面?……

  这在本节课的教学活动确实有所体现,但是还有一定的欠缺,这需要在教学实践中不断的去摸索经验,此外在教学设计中还应更加细致,预先设置的更细致些,会有更好的效果。

7、中班数学教案及教学反思《有趣的几何图形》

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编为大家收集的中班数学教案及教学反思《有趣的几何图形》,仅供参考,大家一起来看看吧。

  活动目标:

  1、引导幼儿区分圆形、三角形、长方形、正方形,并能按标记进行分类。

  2、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。

  3、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。

  4、培养幼儿的观察力、判断力及动手操作能力。

  5、引发幼儿学习的兴趣。

  活动准备:

  1、学会了各种图形的特征。

  2、自制的'“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。

  3、圆形、三角形、长方形、正方形的图形标记,音乐。

  活动过程:

  一、情景导入“捡石头”,激发幼儿活动兴趣。

  1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室)

  2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”

  3、引导幼儿观察、操作,鼓励幼儿边操作边交流。

  4、请小朋友大胆介绍自己喜欢的石头(颜色、形状)。

  5、游戏:按标记举“石头”。

  二、铺石头:

  1、“大家捡了那么多漂亮的石头,我们用它来铺一条石子路,好吗?”

  2、幼儿自由操作:把捡到的“石头”一一对应地嵌入相应形状的“坑”里。

  3、出现问题:“小石头没有了,但是还有坑没有铺好,该怎么办?”

  4、幼儿再次操作。

  5、发现问题:“老师发现这里有块石头很特别,是用两种颜色的石头拼起来的。”请个别幼儿介绍他的方法。

  6、引导幼儿想办法互相合作,用捡来的“石头”铺平“地上”的“坑”。

  7、教师小结:用几个不同形状的图形能拼出一个新的图形来。

  三、踩石头:

  1、“路铺平了,我们来玩踩石头的游戏!”教师介绍玩法:“音乐一响,小朋友就一边念儿歌一边动起来,音乐一停就立即踩到“石头”上,并说说踩的是什么形状、颜色的“石头”。

  2、游戏重复2"3次。

  3、让幼儿找找在幼儿园里有没有这样的图形,结束活动。

  活动延伸:

  1、幼儿操作材料放入活动室计算角,让幼儿在自由活动中继续操作。

  2、让幼儿回家找一找、想一想,在日常生活中有什么东西的形状是圆形、三角形、长方形及正方形,回园告诉老师,并列出图表。

  课后反思:

  在幼儿的活动过程中,确有许多的知识、技能需要教师以直接的方式予以支持。比如,那些幼儿无法凭借现有的条件通过探索获得的经验,教师要直接给予一些替代性的经验,当出现一些新型复合材料的时候,需要给幼儿演示其基本的用法,当幼儿出现无法克服的客观困难的时候,及时的予以解除。图形变变是幼儿喜欢的数学活动,我没有给任何提示,首先让孩子们自己尝试,中间稍微介入一下,最后放手让孩子们变,孩子们的探索有了别样的成功体验。

8、数学《截一个几何体》教学反思

  篇一:截一个几何体教学反思

  本节课教学流程设计合理,流畅。我巧妙地搭建了一个认知的平台,利用学生感兴趣的实例将学生引入数学课堂,抓住学生的心理特征,激励学生大胆想象回答问题,从而得到“奖赏”。随着学生自己动手的切与割,让学生主动发现事物的本质,揭示数学的奥秘,从而激发学生学习数学的兴趣,使学生受益匪浅。

  此外,由于借助多媒体手段,大大提高了教学效率,增加了课堂容量。如果不具备这样的条件,可能需要适当减少某些教学环节,或者将个别教学环节(内容)延伸到课堂之外。

  篇二:截一个几何体教学反思

  先让学生从身边鲜活的实际出发,关注生活中的数学,丰富数学中的生活,激发了应用数学的意识,增强了学好数学的欲望;同时针对初一学生爱问爱动的特征,让他们大胆操作,培养他们动手能力。另外,在截物体时让学生想---做---想,符合认知规律,且想象与实际的差异又能激发学生的数学思维。随着一个个问题的解决,他们一定能够获得足够的成就感和自信心。

  与其他学科相比,数学是比较抽象的,特别是立体几何。学生往往觉得难以到达,枯燥无味,甚至恐惧。究其原因,一是想象力过弱,二是不善逻辑推理。几何教学的'根本任务是要培养学生的这两个方面的能力。让抽象的东西形象化,把立体的问题转化为平面的问题来解决,这是立体几何的根本方法。如何让空间变得具体形象,让每一个学生都在几何上得到发展,并且让不同的学生在几何上得到不同的发展,这是摆在我们每一个数学教师面前的一个艰巨任务。

9、《椭圆的几何性质》教学反思

  20xx年xx月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。这节课从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的指导,都让我受益非浅。

  本节课是苏教版普通高中课程标准实验教科书《数学》选修1—1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。利用曲线方程研究曲线的性质,是解析几何的主要任务。通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛

  物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。

  然而,课后的反思过程中我发现了几个问题:第一,在讲解"顶点"定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即"顶点是椭圆与其对称轴的交点",如果把握住这一点,在讲解时就应先讲"对称性",再讲"顶点";二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课"顶点"之后再讲解,会显得更自然一些;三是"对称性"的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的几点不足都提醒我今后要在研究教材上下更多的功夫。

  还有在讲解完"对称性"、准备讲"离心率"之前,我穿插了一道"画椭圆的简图"的题目。并提圆相似吗?椭圆呢?引起了同学们注意。这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的"扁"的程度与哪些要素有关。大多数学生通过所画的两个椭圆长轴相同、短轴不同,从而"扁"的程度不同,很自然地回答这与有关,圆的形状是完全相同的,而椭圆的形状是否完全相同?如何刻画椭圆的“圆扁”度呢?

  学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)

  切入事先准备好的几何画板展示,固定长轴,移动交点,看变化。教师通过多媒体展示椭圆随着离心率逐渐接近0越圆而越接近1而越扁的动画过程。e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画?为什么不b用。a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。

  比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。

  我会以此为契机,在平日的教学实践中不断思考和创新,不断成长和进步!

相关文章

推荐文章