教案

《分数的基本性质》的教案一等奖设计

2023-07-21 09:30:11

  《分数的基本性质》的教案一等奖设计

《分数的基本性质》的教案一等奖设计

1、《分数的基本性质》的教案一等奖设计

  教学目标:

  1、理解分数的基本性质。

  2、初步掌握分数的基本性质。

  3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

  教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

  设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

  在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

  通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

  第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

  教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考)         新授,探索新知 启发引导,揭示规律 (1) = = = =

  从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的.数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

  请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立   几组相等分数的天空练习

  (用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

  3、请找我的好朋友练习。(以游戏的形式来进行)

  要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

  ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

  4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

  (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

  5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。 作业

2、《分数的基本性质》的教案一等奖设计

  教学内容:人教版五年级数学下册57页内容。

  教学目标:

  知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

  过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

  情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

  教学重点:使学生理解和掌握分数的基本性质。

  教学难点:运用分数的基本性质解决相关的问题。

  教学准备:多媒体课件、正方形纸、直尺、彩笔

  教学过程:

  一、铺垫孕伏,温故迁移

  1.比一比:看谁算得又对又快。

  2.说一说:商不变的性质是什么?

  3.想一想:分数与除法有怎样的关系?

  4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

  二、设疑激趣,探究新知

  (一)故事激趣,引出分数。

  说出自己从故事中听到的分数。

  (二)小组合作,直观感知。

  1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

  2.画一画:画出折痕所在的直线。

  3.涂一涂:

  (1)给平均分成2份的正方形纸的其中的1份涂上颜色。

  (2)给平均分成4份的正方形纸的其中的.2份涂上颜色。

  (3)给平均分成8份的正方形纸的其中的4份涂上颜色。

  4.比一比:比较3张正方形纸涂色部分的大小。

  5.议一议:和同伴说说自己的想法。

  (二)观察比较,探究规律。

  1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

  2.汇报交流。

  3.启发点拨。

  通过从左往右观察、比较、分析,你发现了什么?

  引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。

  那么,从右往左看呢?

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  4.归纳小结:引导学生概括出分数的基本性质。

  5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?

  (三)独立尝试,运用规律。

  1.学生独立思考,完成例2。

  2.反馈交流,订正点拨。

  3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

  三、达标检测,内化提升(见《达标测试题》)

  四、总结收获,评价激励

  这节课你有什么收获?你对自己的哪些表现比较满意?

  板书设计:

  分数的基本性质

  例1:

  分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

  例2:

  ?

  教后反思

3、《分数的基本性质》的教案一等奖设计

  教学目标:

  1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  长方形纸片、彩笔、各种分数卡片。

  教学过程

  一、创设情境,激发兴趣

  1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

  【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

  “同学们,猴王真的分得不公平吗?”

  二、动手操作、导入新课

  同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。

  任选一小组的同学台前展示实验报告,并汇报结论。

  2.组织讨论。

  (1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论。

  3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母,分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。

  三、比较归纳,揭示规律。

  请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。

  1.课件出示探究报告。

  2.分组汇报,归纳性质。

  (1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答板书:同时乘上相同的数)

  (2)从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答板书:除以)

  (3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  (4)综合刚才的探究,你发现什么规律?

  根据学生的回答,揭示课题,

  (……这叫做板书:分数的基本性质)

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (红笔板书:零除外)

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3、智慧眼(下列的式子是否正确?为什么?)

  (1)35=3×25=65(生:35的分子与分母没有同时乘以2,分数的大小改变。)

  (2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)

  (3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)

  (4)25=2×x5×x=2x5x(生:x在这里代表任何数,当x=0时,分数的大小改变。)

  4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?

  三、回归书本,探源获知

  1、浏览课本第107—108页的内容。

  2、看了书,你又有什么收获?还有什么疑问吗?

  3、师生答疑。

  你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?

  4、自主学习并完成例2,请二名学生说出思路。

  四、多层练习,巩固深化。

  1、热身房。353×()5×()9()

  8248÷()24÷()()3

  学生口答后,要求说出是怎样想的?

4、《分数的基本性质》的教案一等奖设计

  篇一:人教版《分数的基本性质》教学设计

  学习内容:教材第75、76页。

  学习目标:

  1.理解和掌握分数的基本性质。

  2.运用分数的基本性质把一个分数化成分母(或分子)而大小

  不变的分数,并能应用这一规律解决简单的实际问题。

  3.培养乐于探究的学习态度。

  学习重点:理解和掌握分数的基本性质。

  学习难点:应用分数的基本性质解决简单的实际问题。

  学习过程:

  一、温故知新、导入新课(2至3分钟)

  1、12÷4 =( 12×3 )÷(4 ×3 ) =

  ( 12 ÷2 )÷(4 ÷2 ) =

  在整数除法中,被除数和除数()或者( )相同的数(0除外),( )不变。

  2、9÷17= ()/()7/16=( )÷( ) ( )÷8= 5/8

  根据分数与除法的关系,我们知道分子可以看成( ),分数线可以看成( ),分母可以看成 ),分数值相当于除法中的( )。

  3、引入课题:除法有商不变性质,那分数有什么基本性质呢?

  我们今天就来学习分数的基本性质。

  (板书:分是的基本性质)

  二、展标:

  先来看看本节课的教学目标:

  1.理解和掌握分数的基本性质。

  2.运用分数的基本性质把一个分数化成分母(或分子)而大小

  不变的分数,并能应用这一规律解决简单的数学问题。

  3.培养乐于探究的学习态度。

  三、自主学习,完成练习。

  1、通过刚才商不变性质,及其分数和除法关系的复习,谁能完

  成我们第一个教学目标呢?

  分数的分子和分母()乘上或者除以相同的数(零除外),

  分数的大小不变这叫做分数的基本性质。

  2. 1/4=( )/8 10/25=( )/5

  1/6=6/( ) 3/( )=12/28

  四、小组合作,完成下面练习

  1、下面是三张同样大小的三张长方形纸,按要求涂色。

  1/2 2/4 4/8

  经过观察会发现,涂色部分的面积(),所以1/2=( )=( )

  2、它们的分子、分母各是按照什么规律变化的?

  这叫做分数的基本性质。

  为什么“0除外”?

  3、和 4/54、回顾结论,提问。

  分数的分子和分母( )乘上或者除以相同的数(零除外),分数的大小不变。这叫做分数的基本性质。

  分数的基本性质与商的不变规律有关系?

  五、当堂检测

  (独立练习,组长批阅)

  一、填空

  1.把13/15 的分子扩大3倍,要使分数的大小不变,它的分母应该( );4/7的分母增加14,要使分数的大小不变,分子应该增加( )。

  2、

  二、判断(对的打“√”,错的打“×” )

  1、分数的分子和分母乘上或除以一个数,分数的大小不变.

  2、分数的分子和分母都乘上或除以一个相同的自然数,分数的大小个变.

  3、分数的分子和分母加上同一个数,分数的大小不变.

  4、一个分数的分子不变,分母扩大3倍,分数的值就扩大4倍.

  三、选择题

  1.一个分数的分子不变,分母除以4,这个分数( ).①扩大4倍 ②缩小4倍 ③不变

  2.一个分数的分子乘上5,分母不变,这个分数( ) ①缩小5倍 ②扩大5倍 ③不变

  3. 3/5的分子增加6,要使分数大小不变,它的分母应该( )

  ①增加6 ②增加15 ③增加10

  四、在○内填“>”、“<”“=”。

  5/12○25/60 5/6○11/9○ 课后反思

  1.你的学习有效吗?有什么经验或教训?

  2.你学到了什么?

  篇二:五年级数学下册 分数的基本性质教案人教版

  教学目标:

  1.使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2.培养学生观察、分析和抽象概括能力。

  3.渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点 : 理解分数的基本性质。

  教学难点:运用分数的基本性质解决实际问题。

  教学过程:

  一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:

  (1)商不变的性质是什么?

  (2)分数与除法的关系是什么? 二、故事激趣、揭示课题

  中秋佳节,孙悟空从嫦娥仙子那里带回三个大小一样的月饼,分给小猴子们吃,它先把第一个平均切成2块,分给猴甲1块,猴乙见到说“太少了,我要2块。”孙悟空把第二个平均切成4块,分给猴乙2块,这时猴丙说:“再多点、再多点。”于是孙悟空把第三个饼平均切成8块,分给猴丙4块,同学们你们知道那只猴子分得多吗? 同学们欲知结果如何,请拿出三个同样大小的长方形纸条,折一折,

  剪一剪,比一比,想一想。

  三、探索研究

  1.动手操作,形象感知。

  (1) 折 请同学们拿出三张同样大的圆形纸,把每张纸都看作单位“1”。用手分别平均折成2份、4份、8份。

  (2) 画 在折好的长方形纸上,分别把其中的2份、4份、8份画上阴影。

  (3) 剪 把长方形中的阴影部分剪下来。

  (4) 比 把剪下的阴影部分重叠,比一比结果怎样。

  把涂色的部分用分数表示出来教师把下面的纸条帖在黑板上。

  2. 观察比较、探究规律

  (1) 通过动手操作,谁能说一说故事的猴甲、猴乙、猴丙各分了饼的几分之几?

  (2) 你认为它们谁分的多?

  (3) 既然它们三个分的同样多,那么1/2 、2/4 和4/8 的大小怎样?我们可以用什么符号把它们连接起来?

  引导学生得出:==

  (4) 这三个分数的分子、分母都不相同,为什么分数的大小却

  1224

  36

  相等呢?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。

  (5) 学生汇报讨论情况。

  (6) 启发点拨。

  通过从左到右的观察、比较、分析,你发现了什么?

  234612

  由变成,平均分的份数和表示的份数有什么变化? 24121把平均分的份数和表示的份数都乘以2,就得到,即24212

  122

  =224

  (板书)。

  把平均分的份数和表示的份数都乘以4,就得到,=(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  那么从右往左看呢?

  2

  引导学生观察明确:

  4

  36

  1236121?33

  =236

  2412

  的分子、分母同时除以

  12

  1

  2,得到

  23。同理,6的分子、分母同时除以4,也可以得到。

  板书:=24

  2242

  =12363=31

  =632

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (7)引导学生概括出分数的基本性质。

  (8)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外),你能举例说明吗?

  3.分数的基本性质与商不变的性质的关系

  4.运用规律、自学例题

  (1) 独立思考:

  1) 把1/2 和15/24 分别化成分母是8而大小不变的分数,分子应怎样变化?变化的依据是什么?

  2) 把1/3 和14/35 分别化成分子是2而大小不变的分数,分母应怎样变化?你是怎样想的?

  (2) 学生汇报讨论情况。

  (3) 小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  四、课堂作业

  1.根据分数的`基本性质,把下列等式补充完整。

  15

  ?

  1?2

  ??

  2

  2???39

  88???2??16?612?71????7412361???28

  28??2??

  426

  ?

  2.在下面各种情况下,怎样才能使分数的大小不变呢?

  (1)把的分母乘以5;

  (2)把812的分子除以4;

  (3)一个分数的分母缩小3倍;

  (4)一个分数的分子扩大2倍。 3.判断。

  (1) 38

  =3?3

  8 33?3

  (2)4=4?4 5

  5?5(3)15

  =15?5 (4)1010?214=

  14?2(5)接力:1/2=8/12=3/4=10/50= 五、课堂小结

  1.这节课我们学习了什么内容?2.什么是分数的基本性质?

  () ()

  篇三:新人教版小学数学五年级下册《分数的基本性质》精品教案

  一、教学内容:五年级下册教科书p75。

  、教学目标:

  1.通过动手操作与观察比较,使学生经历探究分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  3.培养学生观察、比较、抽象、概括等能力以及有条有理、有根有据的逻辑思维能力。

  4.渗透类比的数学思想和方法,在探究中体验学习的乐趣。

  三、教学重点:

  1.在探究的基础上理解分数的基本性质。

  2.能正确运用分数的基本性质。

  四、教学难点:

  1.抽象和概括分数的基本性质。

  2.运用整数除法中商不变的性质解释分数的基本性质。

  五、教法要素:

  1.已有的知识和经验:

  ⑴分数的意义。

  ⑵除法中商不变的性质。

  ⑶分数与除法的关系。

  2.原型:正方形纸片、有关的图示以及通过平均分引出的分数。

  3.探究的问题:

  124⑴、、三个分数之间的关系。 248

  ⑵根据分数与除法的关系,以及整数除法中商不变规律,说明分数的基本性质。

  六、教学过程:

  (一)唤起与生成

  引导学生不用计算,判断“1÷5”、“2÷10”、“10÷50”的商之间有什么联系,并说明依据是什么。

  引入:这是除法中的数学规律,今天我们研究分数中的数学规律。

  (二)探究与解决

  遵循“具体——归纳——演绎”的程序,探究分数的基本性质。

  1.具体。

  ⑴“折”和“分”:

  照例1提示,学生操作:把正方形纸片进行对折,涂上相应部分的颜色,并用分数表示涂色部分。

  ⑵观察和发现:

  引导学生对照三个图形观察三个分数,充分思考:你发现了什么?

  124根据学生回答,板书 =248

  ⑶分析与说明:

  启示学生分析:这三个分数之间有什么联系?

  学生先独立思考,再小组讨论,然后全班交流。交流时,要学生说明是按照什么顺序比的?什么变了?什么没变?小组间相互补充、质疑、完善。

  ⑷补充事例:

  启发学生举出相应的例子,再加以说明,丰富认识。

  2.归纳:

  ⑴根据上面的例子和分析,可以发现什么规律?

  同桌说一说,全班交流,互相补充与完善。

  教师根据学生的回答板书分数的基本的性质,追问:“相同的数”有限制吗?

  ⑵类比迁移。

  启发学生思考:分数的基本性质与学过的什么知识有联系?具体说一说。

  3.演绎:

  ⑴根据分数的基本性质填空:

  1( )( )1015 = =363154( )

  ⑵出示例2,先由学生独立审题并解答,再小组讨论,然后全班交流;交流时要重点说明是怎样想的。结合学生回答,板书分数分子、分母变化的过程。

  (三)训练与应用

  1.完成“做一做”第1题、第2题。学生独立完成,集体订正。

  2.判断正误,并说明理由。

  ⑴分子、分母加上或减去同一个数,分数的大小不变。

  aa×c⑵= bb×c

  3.完成练习十四第1、2、4题。

  (四)小结与提高

  小结学到的知识、方法以及学习的过程等,评价学习的表现。

  课外延伸:今天学的是分数的基本性质,分数还有其他性质吗?有兴趣的同学课后可以了解一下。

5、《分数的基本性质》的教案一等奖设计

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

  讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

  引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  2.组织讨论。

  (1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。

  (3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=2040。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,

  分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以相同的数)

  (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。

  (板书:都除以)

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的`分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

  1、学生在故事情境中大胆猜想。

  通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

6、《分数的基本性质》的教学反思

  “分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,它是本单元的教学重点课时,是在学生已掌握了商不变的性质以及分数与除法的关系基础上进行教学,下面让我对这节课的教学设想作一简单的说明:

  1、创设情境,通过老师讲生活小故事的方式引出,激发学生的学习兴趣。运用情景引入和猜测的方式吸引学生主动参与学习研究。这一情境是我在参考“猴王分饼”的基础上,刚好昨天真的是我小侄子过生日而引用过来的。

  2、发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较。发挥小组合作的作用,分析等式含有的规律.但在具体操作时我的引导不够到位,指向不够明确,学生显得有些拘谨,没放开。

  3、运用知识,解决实际问题。为了把知识转化为能力,我将例题“把分数化成指定分母作分母或指定分子作分子而大小不变的分数”进行整装,通过“希希想要吃到5块蛋糕,婷婷想要吃到6块蛋糕,我将龙龙的.蛋糕平均分成了48块时,该怎么分才公平?”这一情境来进行教学。

  课堂中出现的不足也有很多,如:我按照课前设计的教案进行教学,对于预想之外的问题引导的不够到位;在最后环节“分数接力赛”中,预设不足,没有考虑到课堂纪律以及比赛的公平性和反馈的方式等;整堂课中老师还是有牵着学生走的现象。希望各位领导和同事们能多提宝贵意见,给我一个改正与提高的机会。

7、《分数的基本性质》的教学反思

  一课是本册教材第六单元的一个内容。这部内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得非常的重要。

  本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,首先我以故事导入,来激发学生的学习兴趣。我设计了老和尚给三个小和尚分饼的故事,结果看似不公,实则相同,让学生做裁判评一评,这样,学生学习数学的兴趣必然提高,等学生理解并掌握了分数的基本性质后,学生就明白了。这样,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。教学中采取小组合作学习的形式,提高学生学习的主动性。整堂课我让学生充分展开讨论,课堂气氛非常的活跃,学生学习数学的兴趣十分浓厚。在巩固提高环节,我课前就设计好了题型变化的练习题。注意到了练习题难度的层次性,这样学生的解题能力和思维能力都得到了培养。

  总体来说,本节课突出了分数的基本性质的归纳和理解,学生能较好地理解性质中的关键词“同时”、“相同的数”和“0除外”,对分子分母的变化特点能抓住关键,发现变化的规律。

8、《分数的基本性质》的教学反思

  “分数的基本性质”是人教版小学数学五年级下册的内容,在小学数学学习中有着承前启后、举足轻重的作用。它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。基于这部分知识是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。所以这节课我采用“猜想——验证——反思”的一种研究性学习方式。

  1、迁移引入,沟通新旧知识的联系。

  学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始我设计了两组练习题,一组是利用除法中商不变的性质来解决,一组是利用分数与除法的关系来解决。为新知识的学习奠定基础。同时也在头脑中形成表象,便于学生学习下面的分数的基本性质。

  2、充分发挥学生的主体作用。

  在教学分数基本性质时,并没有把这个性质灌输给学生,而是让学生在自主探究的过程中自己感悟。我先是让学生根据大屏幕上的涂色部分说出用哪个分数来表示,又让观察两个分数的特点,学生自然而然的得出两个分数相等。然后利用小组合作学习,在这些相等的分数中猜测,寻找分子、分母的变化规律,初步得出分数的基本性质。接着我又利用图形与学生一起验证他们所得出结论。这样的活动使得学生始终处于积极思考的状态,不但保持学习的积极性,而且增强了学生学习的自信心,使他们感到我会学,我能行。

  当然,本节课出现的问题也很多:

  首先,在验证、交流环节学生们参与率并不高,在交流时也不主动,很多学生还停留在一知半解的状态。

  其次,猜想的验证过程过于单一,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。

  第三、在小组合作交流方面:本节课的设计中有两处合作交流:一个是在验证猜想时合作。另一个是在发现规律时合作探究,交流沟通。但学生的交流流于形式,没有起到真正的知识碰撞的效果,在今后的教学中对这个问题有待进一步的改进。第四,就像教研员张老师所说,我还是不够充分地信任孩子们,还是我说的太多,而学生说的少,放手的力度不够。

  这节课上完后,我感触颇多,教学真的是一门永远留有遗憾的艺术,在以后的.教学中,我一定会追求更务实的课堂。从学生的实际出发,因地制宜,提高自己的课堂驾驭能力。

9、五年级数学《分数的基本性质》的教学反思

  “分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。反思本节课,我认为以下几点做得较成功:

  (1)新课的引入新颖,上课,先听一段故事,学生非常乐意,并立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的基本性质。教师环环紧扣的提问以及引导学生逐步展开的'充分的讨论,帮助学生一步步得出结论。

  (2)重视学生能力的培养,知识力求让学生主动探索,逐步获取。在教学中,教师为学生提供了自主探索的机会,通过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括能力、动手操作能力和口头表达能力,充分体现学生的主体作用。

  (3)课堂练习形式多样,有层次,有梯度,目的性、针对性较强,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。

  本节课出现的问题也很多:

  首先,在折纸交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。

  其次,在形成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。

  还有,“把每一份平均分成几份”这句话描述不够清晰,学生理解有困难,可以在课件中完善。

相关文章

推荐文章