说课稿

初中数学《反比例函数》一等奖说课稿

2023-09-06 09:11:33

  初中数学《反比例函数》一等奖说课稿

初中数学《反比例函数》一等奖说课稿

1、初中数学《反比例函数》一等奖说课稿

各位评委:

  大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω 20 40 60 80 100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1、出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的'在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2、启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的一般形式:y=k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1、基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5 ②y=6x—1 ③y=—3x—2 ④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346、2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a、写出这个反比例函数的表达式;

  b、根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

  2、能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。

  问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=—1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

2、初中数学《反比例函数》一等奖说课稿

  一、说教学内容

  (一)、本课时的内容、地位及作用

  本课内容是《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

  (二)、教学目标:

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

  1、知识目标

  (1)通过对实际问题的探究,理解反比例函数的实际意义。

  (2)体会反比例函数的不同表示法,会判断反比例函数。

  2、能力目标

  (1)通过两个实际问题,培养学生勤于思考和分析归纳能力。

  (2)在思考、归纳过程中,发展学生的合情说理能力。

  3、情感目标

  (1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。

  (2)理论联系实际,让学生有学有所用的感性认识。

  4、本课题的重点、难点和关键

  重点:反比例函数的概念

  难点:求反比例函数的解析式。

  关键:如何由实际问题转化为数学模型。

  二、说教学方法:

  本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。由于学生在前面已学过"变量之间的关系"和"一次函数"的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

  三、说学法指导:

  课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

  教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地"消化"本节课的内容。同时,让学生体会到"理论来自于实践,而理论又反过来指导实践"的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

  四、说教学过程:

  1、复习引入:

  师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数。

  (一)创设情景,激发热情

  我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。

  多媒体课件展示

  (问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。

  让学生分析变量关系,然后教师总结:依矩形面积可得XY=36 即Y=36/X。

  (二)观察归纳——形成概念

  由实例XY=36 即Y=36/X和T=2000/V 两个式子教师引导学生概括总结出本课新的知识点:

  一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。

  在此教师对该函数做些说明。

  (三)讨论研究——深化概念

  学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念。

  多媒体课件展示。

  例1、下列函数关系中,哪些是反比例函数?

  (1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?

  (2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系。

  (3)、某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。

  学生回答后教师给出正确答案。

  五、即时训练——巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  多媒体课件展示

  (巩固练习:)

  (口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

  Y=5/X Y=0.4/X Y=X/2 XY=2

  5Y=—1/X(给学困生发表见解的机会,激发他们的学习兴趣。)

  学生回答后教师给出正确答案。

  五)突出重点,提高能力

  为了突出重点,特意把书中的练习题设计为例题的形式,以提高学生的分析问题,解决问题的能力,再给出一道类似的题目以加强巩固

  (六)总结反思——提高认识

  由学生总结本节课所学习的主要内容:

  A、反比例函数的意义。

  B、反比例函数的判别。

  让学生通过知识性内容的小结,把课堂教学传授的知识化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,逐渐培养学生的良好的个性品质目标。

  (七)任务后延——自主探究

  学生经过以上五个环节的学习,已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和"减负"的目的。

3、初中数学《反比例函数》一等奖说课稿

  各位评委,大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1. 内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω 20 40 60 80 100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1.出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2.启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的一般形式:y= k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1.基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的.形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a.写出这个反比例函数的表达式;

  b.根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

  2.能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=-1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

4、反比例函数复习与小结《反比例函数小结与思考》教学设计一等奖

  作为一名教职工,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?以下是小编收集整理的【反比例函数复习与小结】《反比例函数:小结与思考》教学设计,欢迎大家分享。

  [教学目标]

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的'模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x

  POD的面积为________

  3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1。6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

5、 初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的`点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

6、初中数学《变量与函数》教案一等奖

  教学目标

  ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义.

  ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力.

  ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.

  教学重点与难点

  重点:函数概念的形成过程.

  难点:正确理解函数的概念.

  教学准备

  每个小组一副弹簧秤和挂件,一根绳子.

  教学设计

  提出问题:

  1.汽车以60千米/时的速度匀速行驶.行驶里程为s千米,行驶时间为t小时.先填写下面的表,再试着用含t的式子表示s:

  t(小时) 1 2 3 4 5

  s(千米)

  2.已知每张电影票的售价为10元.如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

  3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

  注:(1)让学生充分发表意见,然后教师进行点评.

  (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.

  动手实验

  1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,

  观察并记录弹簧长度的变化,填入下表:

  悬挂重物的质量m(kg)

  弹簧长度l(cm)

  如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

  2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示).设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

  注:分组进行实验活动,然后各组选派代表汇报.

  通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的.关系,学会了运用表格形式来表示实验信息.

  探究新知

  (一)变量与常量的概念

  1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程.其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称之为变量.也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量.

  2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.

  3.举出一些变化的实例,指出其中的变量和常量.

  注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报.

  培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.

  (二)函数的概念

  1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

  师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值.

  2.分组讨论教科书P.7 “观察”中的两个问题.

  注:使学生加深对各种表示函数关系的表达方式的印象.

  3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.

  同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

  在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52.

  巩固新知

  下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

  1.右图是北京某日温度变化图

  2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

  3.国内平信邮资(外埠,100克内)简表:

  信件质量m/克 O<m≤20 20<m≤40 40<m≤60

  邮资y/元 O.80 1.60 2.40

  注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法.

  总结归纳

  1.常量与变量的概念;

  2.函数的定义;

  3.函数的三种表示方式.

  注:通过总结归纳,完善学生已有的知识结构.

  布置作业

  1.必做题:教科书P.18 习题11.1第1题.

  2.选做题:教科书P.18 习题11.1第2题.

  3.备选题:

  (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

  ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

  ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

  ③14、15、16日的日平均温度有什么关系?

  ④点A表示的是哪天的日平均温度?大约是多少度?

  ⑤说说这一周的日平均温度是怎样变化的.

  (2)如右图所示,梯形上底的长是x,下底的长是15,高是8.

  ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数.

  ②用表格表示当x从10变到20时(每次增加1),y的相应值.

  ③当x每增加1时,y如何变化?说说你的理由.

  ④当x=0时,y等于多少?此时它表示的是什么?

  (3)研究表明,土豆的产量与氮肥的施用量有如下关系:

  施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

  土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75

  ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数.

  ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由.

  ④简单说一说氮肥的施用量对土豆产量的影响.

  设计思想

  变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃.因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.

相关文章

推荐文章