说课稿

高中数学一等奖说课稿《程序框图》

2023-09-17 19:41:41

  高中数学一等奖说课稿《程序框图》

高中数学一等奖说课稿《程序框图》

1、高中数学一等奖说课稿《程序框图》

  作为一名教学工作者,常常要写一份优秀的说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?下面是小编收集整理的高中数学说课稿《程序框图》,供大家参考借鉴,希望可以帮助到有需要的朋友。

  一、教材分析

  1.教材所处的地位和作用

  通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端,也是使用计算机处理问题前的一个必要的步骤。

  2.教学的重点和难点

  重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构

  难点:能综合运用这些知识正确地画出程序框图。

  二、教学目标分析

  1.知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

  2.过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

  3.情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

  三、教学方法与手段分析

  1.教学方法:采用“问题探究式”教学法,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力以及实际解决问题的.能力。

  2.教学手段:利用多媒体辅助教学,体现在计算机和图形计算器的使用,利用它们来演示程序的设计过程,让学生们能很清楚直观地看到整个经过,并激起他们学习程序设计的兴趣。

  四、教学过程分析

  1.复习回顾,导入新课(约5分钟)

  回顾前面我们如何用自然语言来描述算法,然后向学生们提出问题:用自然语言描述算法有什么缺陷性?是不是不够直观清楚地让我们看到整个算法的程序和步骤?我们平时一般为了能让一个过程呈现得更加直观,我们一般会选择如何解决?解决方法就是作图。通过这几个问题,然后引出我们今天所要学习的内容,那就是为了能更形象直观地让我们看到算法的整个程序和步骤,我们选择用一种新的描述方式来描述算法——程序框图。

  2.启发诱导,探索新知(约20分钟)

  ⑴认识基本图形符号:认识程序框图里出现的基本图形符号,并且能很好地掌握他们,是接下来学习程序框图的前提,所以在学习用程序框图来描述算法之前,我们必须先了解这些符号所代表的意义,那样才能让我们接下来的学习更加顺利。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则。

  ⑵应用符号描述算法:根据刚刚学习的图形符号知识,尝试用程序框图来描述在第一节里我们已经学习过的判定一个数是否为质数的算法的程序。这部分内容主要是在老师的引导下,启发学生一步一步根据所学知识画出程序框图。这样可以使学生们对前面知识的理解有着一定的促进作用,同时培养他们的逻辑思维能力以及动手能力,同时为程序框图的定义的得出打下基础。

  ⑶概括定义加深理解:根据刚刚的作图步骤,让学生们积极思考并回答,然后在老师的引导下归纳得出程序框图的定义。在得出定义之后,要引导学生注意定义里的关键字,然后通过举例进一步向学生们解释这些关键字,以达到更好的掌握效果。

  ⑷初步认识逻辑结构:根据刚刚所作的判定一个数是否为质数的算法的程序框图总结出程序框图的三种不同的逻辑结构,初步向学生们介绍在程序框图里存在的三种不同的基本逻辑结构。由于这部分知识是学生新接触到的内容,所以主要由老师引导学生一同找出图中存在的三种不同的逻辑结构,根据它们各自所呈现的不同特点总结出它们的特征,之后由老师说出它们的名称。这里对逻辑结构的初步认识,也是为后面对它们的深入探究打下基础。

  3.结合例题,深入认识(约10分钟)

  在这一环节我只为学生们准备了1道例题,由于一节课的时间有限,所以这里我只能就上面学习的三种基本逻辑结构里面的最简单的顺序结构,结合例题作更深层次的理解,剩下的两种逻辑结构将是我们下节课学习的主要内容。

  例题选自课本的例3它针对的就是顺序结构,在题目里涉及到一个学生不熟悉的概念,那就是海伦公式,所以首先要让学生们了解那是什么,否则将无从解题。之后就引导学生分析算法,这个过程可以培养学生积极思考的能力。然后由学生们自己作出这道题的程序框图,锻炼学生的动手能力,加深理解。

  4.课堂小结

  ⑴程序框图的基本概念

  ⑵程序框图的几种常用的图形符号(要明确它们的形状、作用及使用规则)

  ⑶程序框图的三种基本逻辑结构(要初步认识它们的基本特征)

  5.布置作业

  ⑴已知x=4,y=2,画出计算w=3x+4y的值的程序框图。(这是一道要求作出具有顺序结构的程序框图题,很基础,一般的学生都能独立完成)

  ⑵由于这节课我们已经初步接触了另外两种逻辑结构,所以我要求学生们能在课后将书上的例4和例5好好思考一下,为下节课的学习做好准备。

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

  6.板书设计:略。

2、高中数学一等奖说课稿《程序框图》

各位老师:

  大家好!我叫,来自XX大学。我说课的题目是《程序框图》,内容选自于新课程人教A版必修3第一章第一节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用 通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端,也是使用计算机处理问题前的一个必要的步骤。

  2.教学的重点和难点

  重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构

  难点:能综合运用这些知识正确地画出程序框图。

  二、教学目标分析

  1.知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

  2.过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

  3.情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

  三、教学方法与手段分析

  1.教学方法:采用“问题探究式”教学法,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力以及实际解决问题的能力。

  2.教学手段:利用多媒体辅助教学,体现在计算机和图形计算器的使用,利用它们来演示程序的设计过程,让学生们能很清楚直观地看到整个经过,并激起他们学习程序设计的兴趣。

  四、教学过程分析

  1.复习回顾,导入新课(约5分钟)

  回顾前面我们如何用自然语言来描述算法,然后向学生们提出问题:用自然语言描述算法有什么缺陷性?是不是不够直观清楚地让我们看到整个算法的程序和步骤?我们平时一般为了能让一个过程呈现得更加直观,我们一般会选择如何解决?解决方法就是作图。通过这几个问题,然后引出我们今天所要学习的内容,那就是为了能更形象直观地让我们看到算法的整个程序和步骤,我们选择用一种新的描述方式来描述算法——程序框图。

  2.启发诱导,探索新知(约20分钟)

  ⑴认识基本图形符号:认识程序框图里出现的基本图形符号,并且能很好地掌握他们,是接下来学习程序框图的前提,所以在学习用程序框图来描述算法之前,我们必须先了解这些符号所代表的意义,那样才能让我们接下来的学习更加顺利。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则。 ⑵应用符号描述算法:根据刚刚学习的图形符号知识,尝试用程序框图来描述在第一节里我们已经学习过的'判定一个数是否为质数的算法的程序。这部分内容主要是在老师的引导下,启发学生一步一步根据所学知识画出程序框图。这样可以使学生们对前面知识的理解有着一定的促进作用,同时培养他们的逻辑思维能力以及动手能力,同时为程序框图的定义的得出打下基础。

  ⑶概括定义加深理解:根据刚刚的作图步骤,让学生们积极思考并回答,然后在老师的引导下归纳得出程序框图的定义。在得出定义之后,要引导学生注意定义里的关键字,然后通过举例进一步向学生们解释这些关键字,以达到更好的掌握效果。

  ⑷初步认识逻辑结构:根据刚刚所作的判定一个数是否为质数的算法的程序框图总结出程序框图的三种不同的逻辑结构,初步向学生们介绍在程序框图里存在的三种不同的基本逻辑结构。由于这部分知识是学生新接触到的内容,所以主要由老师引导学生一同找出图中存在的三种不同的逻辑结构,根据它们各自所呈现的不同特点总结出它们的特征,之后由老师说出它们的名称。这里对逻辑结构的初步认识,也是为后面对它们的深入探究打下基础。

  3.结合例题,深入认识(约10分钟)

  在这一环节我只为学生们准备了1道例题,由于一节课的时间有限,所以这里我只能就上面学习的三种基本逻辑结构里面的最简单的顺序结构,结合例题作更深层次的理解,剩下的两种逻辑结构将是我们下节课学习的主要内容。

  例题选自课本的例3它针对的就是顺序结构,在题目里涉及到一个学生不熟悉的概念,那就是海伦公式,所以首先要让学生们了解那是什么,否则将无从解题。之后就引导学生分析算法,这个过程可以培养学生积极思考的能力。然后由学生们自己作出这道题的程序框图,锻炼学生的动手能力,加深理解。

  4.课堂小结

  ⑴程序框图的基本概念

  ⑵程序框图的几种常用的图形符号(要明确它们的形状、作用及使用规则) ⑶程序框图的三种基本逻辑结构(要初步认识它们的基本特征)

  5.布置作业

  ⑴已知x=4,y=2,画出计算w=3x+4y的值的程序框图。(这是一道要求作出具有顺序结构的程序框图题,很基础,一般的学生都能独立完成)

  ⑵由于这节课我们已经初步接触了另外两种逻辑结构,所以我要求学生们能在课后将书上的例4和例5好好思考一下,为下节课的学习做好准备。

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

  6.板书设计:略

3、高中数学一等奖说课稿《程序框图》

各位老师:

  大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《程序框图》,内容选自于新课程人教A版必修3第一章第一节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端,也是使用计算机处理问题前的一个必要的步骤。

  2.教学的重点和难点

  重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构

  难点:能综合运用这些知识正确地画出程序框图。

  二、教学目标分析

  1.知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

  2.过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

  3.情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

  三、教学方法与手段分析

  1.教学方法:采用“问题探究式”教学法,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力以及实际解决问题的能力。

  2.教学手段:利用多媒体辅助教学,体现在计算机和图形计算器的使用,利用它们来演示程序的设计过程,让学生们能很清楚直观地看到整个经过,并激起他们学习程序设计的'兴趣。

  四、教学过程分析

  1.复习回顾,导入新课(约5分钟)

  回顾前面我们如何用自然语言来描述算法,然后向学生们提出问题:用自然语言描述算法有什么缺陷性?是不是不够直观清楚地让我们看到整个算法的程序和步骤?我们平时一般为了能让一个过程呈现得更加直观,我们一般会选择如何解决?解决方法就是作图。通过这几个问题,然后引出我们今天所要学习的内容,那就是为了能更形象直观地让我们看到算法的整个程序和步骤,我们选择用一种新的描述方式来描述算法——程序框图。

  2.启发诱导,探索新知(约20分钟)

  ⑴认识基本图形符号:认识程序框图里出现的基本图形符号,并且能很好地掌握他们,是接下来学习程序框图的前提,所以在学习用程序框图来描述算法之前,我们必须先了解这些符号所代表的意义,那样才能让我们接下来的学习更加顺利。在学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则。

  ⑵应用符号描述算法:根据刚刚学习的图形符号知识,尝试用程序框图来描述在第一节里我们已经学习过的判定一个数是否为质数的算法的程序。这部分内容主要是在老师的引导下,启发学生一步一步根据所学知识画出程序框图。这样可以使学生们对前面知识的理解有着一定的促进作用,同时培养他们的逻辑思维能力以及动手能力,同时为程序框图的定义的得出打下基础。

  ⑶概括定义加深理解:根据刚刚的作图步骤,让学生们积极思考并回答,然后在老师的引导下归纳得出程序框图的定义。在得出定义之后,要引导学生注意定义里的关键字,然后通过举例进一步向学生们解释这些关键字,以达到更好的掌握效果。

  ⑷初步认识逻辑结构:根据刚刚所作的判定一个数是否为质数的算法的程序框图总结出程序框图的三种不同的逻辑结构,初步向学生们介绍在程序框图里存在的三种不同的基本逻辑结构。由于这部分知识是学生新接触到的内容,所以主要由老师引导学生一同找出图中存在的三种不同的逻辑结构,根据它们各自所呈现的不同特点总结出它们的特征,之后由老师说出它们的名称。这里对逻辑结构的初步认识,也是为后面对它们的深入探究打下基础。

  3.结合例题,深入认识(约10分钟)

  在这一环节我只为学生们准备了1道例题,由于一节课的时间有限,所以这里我只能就上面学习的三种基本逻辑结构里面的最简单的顺序结构,结合例题作更深层次的理解,剩下的两种逻辑结构将是我们下节课学习的主要内容。

  例题选自课本的例3它针对的就是顺序结构,在题目里涉及到一个学生不熟悉的概念,那就是海伦公式,所以首先要让学生们了解那是什么,否则将无从解题。之后就引导学生分析算法,这个过程可以培养学生积极思考的能力。然后由学生们自己作出这道题的程序框图,锻炼学生的动手能力,加深理解。

  4.课堂小结

  ⑴程序框图的基本概念

  ⑵程序框图的几种常用的图形符号(要明确它们的形状、作用及使用规则)

  ⑶程序框图的三种基本逻辑结构(要初步认识它们的基本特征)

  5.布置作业

  ⑴已知x=4,y=2,画出计算w=3x+4y的值的程序框图。(这是一道要求作出具有顺序结构的程序框图题,很基础,一般的学生都能独立完成)

  ⑵由于这节课我们已经初步接触了另外两种逻辑结构,所以我要求学生们能在课后将书上的例4和例5好好思考一下,为下节课的学习做好准备。

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

  6.板书设计

4、高中数学《椭圆及其标准方程》教案一等奖

  作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。教案要怎么写呢?下面是小编精心整理的高中数学《椭圆及其标准方程》教案,欢迎阅读与收藏。

  一、教材分析

  1、教材的地位及作用

  圆锥曲线是高考重点考查内容。“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用“曲线和方程”理论解决具体的二次曲线的又一实例。

  从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;

  从方法上说,它为后面研究双曲线、抛物线提供了基本模式;

  所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。

  2、教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。

  (2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。

  (3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。

  3、教学重点、难点

  教学重点:椭圆的定义及椭圆的标准方程。

  教学难点:椭圆标准方程的建立和推导。

  在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

  据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的'推导为本课的难点。

  4、教材处理

  根据新课程大纲要求,本节课的内容特点以及结合我班学生的实际情况,我把本节内容分2个课时进行教学。

  第一课时,主要研究椭圆的定义、标准方程的推导。

  第二课时,运用椭圆的定义求曲线的轨迹方程。

  二、教学方法和教学手段

  课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

  教学方法:我采用的是引导发现法、探索讨论法等。

  1、引导发现法:用动画演示动点的轨迹,启发学生归纳、概括椭圆定义。

  2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;

  有利于突出重点,突破难点,发挥其创造性。

  引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。

  教学手段:利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。

  三、学法指导

  “授人以鱼,不如授人以渔。”

  教会学生:

  1、动手尝试。

  2、仔细观察。

  3分析讨论。

  4、抽象出概念,推出方程。

  这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。

  四、教学过程

  教学流程设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→作业布置

  五、教学评价

  1、这节课围绕“认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用”这一主线展开。

  2、教学中学生通过观看动画、动手实践,自己总结出椭圆定义,符合从感性上升为理性的认识规律。

  3、在整个教学过程中,采用引导发现法、探索讨论法等教学方法,注重数形结合等数学思想的渗透。培养学生勇于探索、勇于创新的精神。

5、高中数学选修《合情推理与演绎推理》教案一等奖

  同学们要掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。下面是小编分享的高中数学选修《合情推理与演绎推理》教案,欢迎大家阅读!

  学习目标

  1。 能利用归纳推理与类比推理进行一些简单的推理;

  2。 掌握演绎推理的基本方法,并能运用它们进行一些简单的推理;

  3。 体会合情推理和演绎推理的区别与联系。

  学习过程

  一、课前准备

  复习1:归纳推理是由 到 的推理。

  类比推理是由 到 的推理。

  合情推理的结论 。

  复习2:演绎推理是由 到 的推理。

  演绎推理的结论 。

  复习3:归纳推理是由 到 的推理。

  类比推理是由 到 的推理。

  合情推理的结论 。

  复习4:演绎推理是由 到 的推理。

  演绎推理的结论 。

  二、新课导学

  ※ 典型例题

  例1 观察(1)(2)

  由以上两式成立,推广到一般结论,写出你的推论。

  变式:已知:

  通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明。

  例2 在 中,若 ,则 ,则在立体几何中,给出四面体性质的猜想。

  变式:命题“正三角形内任一点到三边的距离等于常数,”对正四面体是否有类似的结论?

  例3:已知等差数列 的公差为d ,前n项和为 ,有如下性质:

  (1) ,

  (2)若 ,

  则 ,

  类比上述性质,在等比数列 中,写出类似的性质。

  例4 判断下面的推理是否正确,并用符号表示其中蕴含的推理规则:已知 是5的倍数,可知或者m+1是5的倍数,或者5m+1是5的倍数;因为5m+1不是5的倍数,所以m+1是5的倍数。

  ※ 动手试试

  练1。若数列 的通项公式 ,记 ,试通过计算 的值,推测出

  练2。代数中有乘法公式。:

  再以乘法运算继续求:

  …………

  观察上述结果,你能做出什么猜想?

  练3。 若三角形内切圆半径为r,三边长为a,b,c,则三角形的`面积 ,根据类比思想,若四面体内切球半径为R,四个面的面积为 ,则四面体的体积V= 。

  三、总结提升

  ※ 学习小结

  1。 合情推理 ;结论不一定正确。

  2。 演绎推理:由一般到特殊。前提和推理形式正确结论一定正确。

  ※ 当堂检测(时量:5分钟 满分:10分)计分:

  1。 由数列 ,猜想该数列的第n项可能是( )。

  A。 B。 C。 D。

  2。下面四个在平面内成立的结论

  ①平行于同一直线的两直线平行

  ②一条直线如果与两条平行线中的一条垂直,则必与另一条相交

  ③垂直于同一直线的两直线平行

  ④一条直线如果与两条平行线中的一条相交,则必与另一条相交

  在空间中也成立的为( )。

  A。①② B。 ③④ C。 ②④ D。①③

  3。在数列 中,已知 ,试归纳推理出 。

  4。 用演绎推理证明函数 是增函数时的大前提是( )。

  A。增函数的定义 B。函数 满足增函数的定义

  C。若 ,则 D。若 , 则

  5。 设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三条直线不过同一点。若用 表示这n条直线交点的个数,则 = ;当n>4时,=(用含n的数学表达式表示)。

  课后作业

  1。判别下列推理是否正确:

  (1)如果不买彩票,那么就不能中奖。因为你买了彩票,所以你一定中奖、

  (2)因为正方形的对角线互相平分且相等,所以一个四边形的对角线互相平分且相等,则此四边形是正方形。

  (3)因为 ,所以

  2 证明函数 在 上是减函数。

  3。 数列 满足 ,先计算数列的前4项,再归纳猜想 。

  4。 求证:如果一条直线垂直于两条相交直线,那么此直线垂直于这两条相交直线所在的平面。

6、高中数学必修五《正弦定理和余弦定理》教学设计一等奖

  (一)教材分析

  (1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

  (2)重点、难点。

  重点:正余弦定理的'证明和应用

  难点:利用向量知识证明定理

  (二)教学目标

  (1)知识目标:

  ①要学生掌握正余弦定理的推导过程和内容;

  ②能够运用正余弦定理解三角形;

  ③了解向量知识的应用。

  (2)能力目标:提高学生分析问题、解决问题的能力。

  (3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。

  (三)教学过程

  教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。

  教学过程分如下几个环节:

  教学过程课堂引入

  1、定理推导

  2、证明定理

  3、总结定理

  4、归纳小结

  5、反馈练习

  6、课堂总结、布置作业

  具体教学过程如下:

  (1)课堂引入:

  正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?

  (2)定理的推导。

  首先提出问题:RtΔABC中可建立哪些边角关系?

  目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:

  ①引导学生从SinA、SinB的表达式中发现联系。

  ②继续引导学生观察特点,有A边A角,B边B角;

  ③接着引导:能用C边C角表示吗?

  ④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?

  发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

  这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

  第二步证明定理:

  ①用向量方法证明定理:学生不易想到,设计如下:

  问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破

  实践:师生共同完成锐角三角形中定理证明

  独立:学生独立完成在钝角三角形中的证明

  总结定理:师生共同对定理进行总结,再认识。

  在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。

  在定理总结之后,教师布置思考题:定理还有没有其他证法?

  通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。

  (3)例题设置。

  例1△ABC中,已知c=10,A=45°,C=30°,求b.

  (学生口答、教师板书)

  设计意图:①加深对定理的认识;②提高解决实际问题的能力

  例2△ABC中,a=20,b=28,A=40°,求B和C.

  例3 △ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解

  例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。

  可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。

  设计意图:

  ①增强学生对定理灵活运用的能力

  ②提高分析问题解决问题的能力

  ③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。

  (四)归纳小结。

  借助多媒体动态演示:图表

  使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。

  这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。

  (五)反馈练习:

  练习①△ABC中,已知a=60,b=48,A=36°

  ②△ABC中,已知a=19,b=29,A=4°

  ③△ABC中,已知a=60,b=48,A=92°

  判断解的情况。

  通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。

  (六)课堂总结,布置作业。

相关文章

推荐文章