八年级数学下册《正方形的判定》一等奖说课稿
1、八年级数学下册《正方形的判定》一等奖说课稿
作为一名优秀的教育工作者,通常需要用到说课稿来辅助教学,借助说课稿我们可以快速提升自己的教学能力。我们应该怎么写说课稿呢?下面是小编整理的八年级数学下册《正方形的判定》说课稿范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
[说教材]
一、教材分析
(一)、教材地位作用:《正方形的判定》是华东师大版义务教育实验教材数学八年级(下册)第20章第4节的内容,本节课注重新旧知识的联系与类比,注重图形的分析、判别;在学生学习了平行四边形、距形、菱形的判定之后,接触正方形的性质的基础上,引入了正方形的判定,这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形的判定进行综合的不可缺少的重要环节。
(二)、教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识目标:
1、掌握正方形的判定方法。
2、运用正方形的判定方法解决问题。
能力目标:
1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力,让其逻辑推理能力有进一步的提升。
2、灵活应用正方形的判定,培养学生的思维能力。
情感目标:通过对平行四边形、距形、菱形等判定方法的类比,进一步领悟类比的思想方法和数形结合的思想。
(三)教学重点与难点:根据数学课程标准的要求,结合学生的实际特点,确定教学的重点与难点:
重点:正方形的判定方法。
难点:正方形判定方法的应用。
(充分运用多媒体教学手锻,并把课件设置为比较生动、有趣容、易懂的动画,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直到布置作业,突出主线,层层深入,逐一突破重难点。)
[说学生]
二、学情分析:
初二学生经过两年的几何学习,学生对几何图形的'观察,几何图形的分析能力已初步形成。但我教了几年的数学中发现一些很严重的问题,也就是我最头痛的问题,学生很怕做几何题,特别是证明题,具体有两种情况:“不会看也不会写”、“会看但写不出来”,即文字表述无法用几何语言来表示,逻辑推理过程混乱。
[说教学法]
三、教法选择:
本节课的内容虽然不多,但是前三节课内容平行四边形、菱形、矩形的判定进行综合,对学生的逆向思维与推理能力要求比较高,针对本班的学生的知识结构和心理特征,因此我采用了多媒体辅助教学,运用了“情境引入、动手操作、合作交流、引导提问、归纳论证、深化巩固”的启发式教学方法。教学中,引导学生经历“提出假设——操作验证——推理论证”的过程,充分感受教学思维的特点,进一步提高逻辑推理的能力,增强探索新知识的兴趣。
四、学法指导:
结合本课内容特点和新课标精神,学生在学习中发挥主体作用。采取“假设、操作、观察、思考、讨论、论证、类比、应用”的探究式学习方法,在掌握新知识的同时,培养大胆猜想、独立思考、合作交流、勇于探索的良好习惯,提高操作观察能力和逻辑思维水平。
[说教学过程]
五、教学过程:
根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:
六、教学评价
本节课是我前几天刚上的内容,在教学设计上,我依据教材、《课标》及学生实际情况,坚持了以学生为中心的教学思想,运用了引导启发式的教学方法,教学内容的组织考虑了逻辑顺序与心理顺序的结合、知识学习与技能人格发展的统一,取得较好的效果。但还有一部分的学生在课堂上已掌握,但过几天后就忘记了,这些学生都存在很多问题,如少练、厌学的现象。所以在以后的教学工作中还要努力改进。
2、八年级数学下册《正方形的判定》一等奖说课稿
[说教材]
一、教材分析
(一)、教材地位作用:《正方形的判定》是华东师大版义务教育实验教材数学八年级(下册)第20章第4节的内容,本节课注重新旧知识的联系与类比,注重图形的分析、判别;在学生学习了平行四边形、距形、菱形的判定之后,接触正方形的性质的基础上,引入了正方形的判定,这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形的判定进行综合的不可缺少的重要环节。
(二)、教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识目标:1、掌握正方形的判定方法。2、运用正方形的判定方法解决问题。
能力目标:1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力,让其逻辑推理能力有进一步的提升。2、灵活应用正方形的判定,培养学生的思维能力。
情感目标:通过对平行四边形、距形、菱形等判定方法的类比,进一步领悟类比的思想方法和数形结合的思想。
(三)教学重点与难点:根据数学课程标准的要求,结合学生的实际特点,确定教学的重点与难点:
重点:正方形的判定方法。 难点:正方形判定方法的应用。
(充分运用多媒体教学手锻,并把课件设置为比较生动、有趣容、易懂的动画,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直到布置作业,突出主线,层层深入,逐一突破重难点。)
[说学生]
二、学情分析:
初二学生经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。但我教了几年的数学中发现一些很严重的问题,也就是我最头痛的问题,学生很怕做几何题,特别是证明题,具体有两种情况:“不会看也不会写”、“会看但写不出来”,即文字表述无法用几何语言来表示,逻辑推理过程混乱。
[说教学法]
三、教法选择:
本节课的内容虽然不多,但是前三节课内容平行四边形、菱形、矩形的判定进行综合,对学生的逆向思维与推理能力要求比较高,针对本班的学生的知识结构和心理特征,因此我采用了多媒体辅助教学,运用了“情境引入、动手操作、合作交流、引导提问、归纳论证、深化巩固”的启发式教学方法。教学中,引导学生经历“提出假设——操作验证——推理论证”的过程,充分感受教学思维的特点,进一步提高逻辑推理的能力,增强探索新知识的兴趣。
四、学法指导:
结合本课内容特点和新课标精神,学生在学习中发挥主体作用。采取“假设、操作、观察、思考、讨论、论证、类比、应用”的探究式学习方法,在掌握新知识的同时,培养大胆猜想、独立思考、合作交流、勇于探索的'良好习惯,提高操作观察能力和逻辑思维水平。
[说教学过程]
五、教学过程:
根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:
六、教学评价
本节课是我前几天刚上的内容,在教学设计上,我依据教材、《课标》及学生实际情况,坚持了以学生为中心的教学思想,运用了引导启发式的教学方法,教学内容的组织考虑了逻辑顺序与心理顺序的结合、知识学习与技能人格发展的统一,取得较好的效果。但还有一部分的学生在课堂上已掌握,但过几天后就忘记了,这些学生都存在很多问题,如少练、厌学的现象。所以在以后的教学工作中还要努力改进。
3、八年级数学下册《正方形的判定》一等奖说课稿
“长方形和正方形的认识”一课是西师版义务教育课程标准实验教科书小学数学二年级下册第六单元的内容。下面我从教材分析、教法选择、学法指导和教学程序四个方面来进行阐述。
第一部分 教材分析
这节课的内容是学生在对长方形和正方形已经有了初步认识的基础上,进一步对长方形和正方形特征的认识。它为以后学习长方形和正方形的周长与面积以及认识长方体和正方体的特征作奠基。
《数学课程标准》提倡以“问题情境—建立模型—解释、应用与拓展、反思”的基本模式展现教学内容,让学生经历“数学化”和再创造的过程。因此,教材一开始就从生活中的实例引入长方形和正方形的认识。然后,教材创设两个情境,引导学生通过动手“数一数”、“量一量”、“折一折”、“比一比”,认识长方形、正方形边、角的特征。接着,安排课堂活动巩固学生对特征的认识,进一步建构对长方形与正方形的空间观念。最后,教材安排了一些具有可操作性、开放性、挑战性的习题,让学生学会运用所学知识解决问题。
教学目标:
知识目标:掌握长方形、正方形的特征。
能力目标:培养学生有序地观察和动手操作能力。
情感目标:学会与他人合作、交流;渗透数学美的观点,培养学生爱数学的情感。
教学重点:长方形和正方形特征的认识。
教学难点:小组合作探究长方形、正方形的'特征。
教具准备:
计算机软件、实物投影仪、小棒、长方形纸片、正方形纸片、三角板、直尺
学具准备:
小棒、长方形纸片、正方形纸片、钉子板、三角板、直尺、实验报告单。
第二部分教法选择
《数学课程标准》指出:“有效的数学学习活动不能靠单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,本节课以小组合作学习为主要形式,以“动手实践、自主探索、合作交流”为主要学习方式。遵循(从)感知→(经)表象→(到)概括这一认知规律,让学生在探究交流中掌握知识。
第三部分学法指导
1、引导学生通过动手“数一数” 、“量一量” 、“折一折” 、“比一比” ,有序地进行操作、观察、探究交流,发现长方形、正方形的特征。
2、把静态的课本材料变成动态的教学内容,让学生在动手中思维、在观察中分析,真正掌握长方形、正方形的特征。
第四部分教学程序
根据新课标的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,我对本节课的教学过程设计如下:
一、创设情境,引入新课。
一上课我就对学生说:小朋友们,在我们的生活中,有许多的图形在装扮着我们的学习与生活。看,这是我们的新教室,多漂亮啊!你知道哪些物体的面是正方形,哪些物体的面是长方形吗?学生观察后会说黑板的面、课桌和讲台的面是长方形;钟表的面和地板砖是正方形等等。这时我再对学生说:小朋友们真了不起!已经能辨认出长方形和正方形,那么长方形和正方形各有什么特征呢?这就是我们今天要探讨的问题。接下来就很自然的引出课题——长方形和正方形的认识。然后再出示本节课的学习目标:通过这节课的学习,要求大家掌握长方形和正方形的特征。
这一环节的设计利用了学生所熟悉的物体,贴近学生的生活,让学生体验到生活中处处有数学,这样激发了学生的学习兴趣,为后面的探索学习创造了一个良好的环境。
二、自主探究,合作交流。
1、要求各小组在学具中选用所需的材料,开始研究长方形和正方形的特征,请小组长做好分工,把研究结果记录在实验报告单上。
边 角
长方形 有( )条边,
对边( ) 有( )个角,都是( )角
正方形 有()条边,
每条边( ) 有( )个角,都是( )角
2、学生开始活动时,我到学生中去巡视指导,并鼓励学生选用不同的材料和方面进行研究。学生也可以到其他组去看一看,学一学,交流一下。
3、小组汇报。
请各小组汇报各自的实验情况。要求汇报时说清楚选用的实验材料、方法和研究结果。为了让学生更好地掌握长方形、正方形的特征,这里我引导学生从两个方面进行汇报。
首先是探讨边的特征,学生的汇报可能有以下几种情况:
第一种情况:在做实验时,学生选用长方形纸片、正方形纸片、直尺。
通过数一数,发现长方形和正方形都有4条边。
通过用直尺量,发现长方形相对的两条长边一样长,相对的两条短边一样长。正方形的4条边都一样长。
这时我引导学生观察长方形两条较长的边和两条较短的边,它们的位置都正好是相对的,所以我们把它们叫做对边。从而得出:长方形的对边相等。
第二种情况:在做实验时,学生选用了长方形纸片、正方形纸片
在研究长方形时是通过折纸得出来的。学生这样折:
先上下对折,发现长方形上下两边重合在一起,说明这两条边一样长。
再左右对折,发现长方形左右两边重合在一起,说明左右边也一样长。
从而得出:长方形有4条边,对边相等。
在研究正方形时学生这样折:
把正方形纸片先对角折,再对角折,发现正方形4条边都重合在一起,说明正
方形4条边都一样长。
第三种情况:学生选用的是钉子板。
通过数格子,发现了长方形长边都占了6格,短边都占了4格;正方形4条边都占了5格。说明长方形对边相等,正方形4条边都相等。
4、三年级数学下册《长方形和正方形的面积》教案一等奖
教学内容:教科书53-55。长方形和正方形的面积
教学目标:
1、正确掌握平方千米和公顷间的进率,正确运用进率进行换算。
2、通过练习让学生进一步巩固公顷、平方千米在实际生活中的应用。
3、让学生真正体会数学来源于生活,体验数学美。
教学重难点:
利用公顷、平方千米解决生活中的实际问题
教学过程:
1、复习旧知,导入练习课
为下面做练习题做好铺垫。
2、平方米、公顷和平方千米单位间换算的'练习
练习时让学生独立完成,完成后要组织交流,说说换算方法,教师还可以补充些题目进行训练。
3、第7题
是运用长方形、正方形的知识,研究周长一定,长、宽、面积的变化规律。通过学生的猜想、操作、测量、计算、找规律,从而发现用一定长度的铁丝围成的不同长方形或正方形,周长是相等的,但面积是不相等的,这里要注意渗透函数思想。
4、第6题
虽然是一道选做题,但算理并不难,关键是需要把2公顷化成20000平方米后才能列算式进行计算。算式:2公顷=20000平方米20000÷4=5000棵
5、可以根据实际情况再加一些练习题。
1、一块长方形的菜地,长50米,宽30米,这块地的占地面积是多少?张大爷用了这块地的一半种萝卜,种萝卜的面积是多少?
课堂练习设计:
5、八年级数学下册《勾股定理的应用》教学设计一等奖
在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、
第一环节:情境引入
情景1:复习提问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现数学的严谨性和规范性。
情景2:脑筋急转弯一个三角形的`两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念。
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题。
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史。
第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
6、八年级数学下册《勾股定理的应用》教学设计一等奖
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的.同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、
第一环节:情境引入
情景1:复习提 问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现
数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
7、八年级数学下册《二次根式的加减》第3课时优秀教案一等奖
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的'二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
8、八年级数学下册《平行四边形》教案一等奖设计
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的.四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。