说课稿

七年级下册《平行线》一等奖说课稿

2023-10-05 16:44:48

  七年级下册《平行线》一等奖说课稿

七年级下册《平行线》一等奖说课稿

1、七年级下册《平行线》一等奖说课稿

  尊敬的各位评委老师:

  大家好!我是 ,我说课的题目是《平行线及平行公理》,下面我从教材分析、教学方法和媒体的选择、对学生学法的指导、教学过程的设计和说课综述5个方面进行阐述:

  一、 教材分析:

  1、 教材的地位和作用:

  平行线及平行公理是初中几何的重要内容,也是本章的重点,主要学习:平行线的定义、画法,平行公理及平行公理的推论,它是在相交线、对顶角、垂线之后编排的,是以小学学过的平行线画法及中学学过的相交线、直线的有关知识为基础进一步学习的问题,重点探讨了定义、画法、公理及推论。特点之一:它揭示了同一平面内的两直线除了相交之外的另一种位置:关系平行,为今后学习平行线的判定和性质以及八年级研究的特殊四边形的有关知识奠定了基础,也为今后证明两直线平行提供了重要方法和依据;特点之二:通过本节课的学习使学生的使的认识由具体到抽象;由特殊到一般;由感性到理性,有助于培养学生思维的严谨性和深刻性,对于培养学生的动手实践能力、视图能力起着重要的作用,所以本段教材承上启下、至关重要。

  2、 教学目标的确定

  《数学课程标准》要求:“通过义务教育阶段的数学学习,使学生获得数学重要知识以及基本的数学思想方法和必要的应用技能,了解数学的价值,增进学生对数学的理解和学好数学的信心,具有初步的实践能力。根据本节教材特点,结合七年级学生已具备的初步的几何基础知识,我确定如下教学目标:

  (1) 知识目标:了解平行线的意义及平行公理,会用直尺和三角板画平行线,理解平行线的传递性。

  (2) 能力目标:通过渗透类比、转化数学思想和方法,培养学生观察、归纳、概括、抽象等思维能力以及视图能力。

  (3) 德育目标:向学生渗透数学于实践的辨证唯物主义观点。

  3、 教学重点和难点:

  由于平行公理和推论是集合证明两直线平行的重要和依据,而且这些知识的得出有助于培养学生的实践能力,使学生由感性到理性,实现了认识上的飞跃,所以本节课教学重点是:平行公理及推论。但由于七年级的学生接触到几何学习时间不长、内容不多,思维具有单一性,理解能力有限,对于平行公理的推论要真正弄清楚有一定难度,所以我把如何理解平行公理的推论作为本节课的教学难点。

  二、 教学方法和媒体的选择

  教无定法,教学有法,贵在得法。选择恰当的教学方法尤为重要。新课程理念强调:我们的课程不仅是文本课程,更是体验课程,它不在只是知识的载体,而是教师引导学生、与学生共同探究新知识的过程,由于七年级的学生好奇心、自我表现欲望高,根据加德纳的多元化智能理论和双主教学原则,结合本段教材特点,我选择的教学方法是:引导发现法,并以电化教学为辅助教学手段。

  引导发现法作为一种启发式教学方法,体现了认知心理学,在教学过程中,教师采取启发式教学方法引导学生动手实践、自主探索与合作交流,以达到学生对知识的发现、形成与巩固,进而实现知识的内化。教学媒体我采用电化媒体,电脑媒体以其形象、颜色等多种形式强化对学生感官的刺激,提高学生的学习兴趣,增强了感性认识,使教学目标更完美的实现,另外,电脑媒体具有良好的交互性,它可以将教师的教学策略和学生的学习思路交互体现,更好地为教学服务。

  三、 对学生学法的指导

  通过指导学生运用观察、实践、类比、探索、归纳等方法,使学生获得知识,形成技能,发展思维。

  四、 教学过程的设计

  1、 结合实际,情景导入

  上课开始教师首先强调前面我们已经学过两直线相交的情形,在同一平面内两直线还有不相交的情形然后教师用展示笔直的两条铁轨、立在路边的两根电线杆。引导学生仔细观察并发现:每个图形的两条直线是不相交的,启发学生:请思考现实生活中还有这样的想象吗?由学生举例,教师指导具有这种位置关系的两条直线就是今天我们要学的平行线(板书课题)。我这样设计的目的是创设情境,激发兴趣,使学生从生活走进数学,自然地渗透数学于实践的观点。

  2、 理性归纳,形成概念

  什么叫平行线呢?教师引导学生通过观察、抽象、概括,尝试用几何语言描述图形的特点,师生共同完善表述内容,形成概念,对于学生的积极表现,教师适时给予评价,及时鼓励,使学生增强信心,并给出平行线的符号表示及读法,指出同一平面内两直线的位置关系只有相交或平行。我这样设计的目的是为了充分调动学生的积极性,培养学生的语言表达能力及观察、抽象、概括的能力。

  3、 及时反馈,巩固概念

  为了及时巩固概念,我用出示了两道判断题:(1)在同一平面内不相交的线段(2)长方体的两个棱。通过判断可知:长方体的两个棱既不相交也不平行,显然不是平行线,我们把这样的两条直线叫异面直线。我用这两个定义来强调定义中“在同一平面、不相交、两条直线”这些条件缺一不可。这样不但及时巩固概念,同时也培养了学生的视图能力。

  4、 动手实践,理性归纳

  对于平行线的公理及推论的教学我是这样设计的:在复习小学平行线的画法的基础上,由学生动手操作:过直线AB外一点 P画已知直线AB的.平行线,突出“两靠紧,推动”等重要步骤和方法,然后出示练习:按要求作图。用来强化作图技能,用投影展示学生画图,共同评判,然后引导学生在刚才的基本图形上过P再画直线AB的平行线,从而得出此平行线存在的唯一性,进而归纳出平行公理,若过直线AB再画AB的平行线,发现三条直线彼此是平行的,为什么呢?学生讨论,这样突破了教学难点。我这样设计的目的在于充分调动学生参与数学活动的意识,学生通过动手实践、自主探索与合作交流,达到思维碰撞,获得对数学最深切的感受,体会创造之乐,通过推论的得出,实现了“再创造”的过程,富有成就感,同时也培养了学生动手实践的能力,语言表达能力及团结协作的能力,突出了教学重点,从而突破了教学难点。

  5、 反馈练习,巩固所学

  为了及时巩固所学知识,我设计了三个层次的练习题:第一题是判断题,目的是巩固基础知识;第二题是填空题,平行公理的推论的符号表示,旨在培养学生图形与符号的转换能力,同时也发展了学生的符号感;第三题是读语句、画图形,书本P 页,旨在检查学生画图技能的形成情况,强化动手操作能力的培养。设计习题力求层层深入、步步递进,既注重双基,又注重能力的培养,使数学教学面向全体,体现了素质教育提出的面向全体的要求。

  6、 课堂小结,布置作业

  课堂小结主要由学生完成,教师适时进行重点强调。分两层:第一层是知识和方法的总结:

  (1) 本节课学习了那些知识?还有什么疑问?

  (2) 平行线是怎么定义的?在同一平面内两条直线有几种位置关系?平行公理和平行公理的推论是什么?

  学生回答后,教师用概括归纳本节课的知识框架,使本节内容一目了然,重点突出。

  第二层是在本节课的学习中学生学习体会和感受方面的总结

  布置作业分两层:

  (1)必做:教科书

  (2)观察与思考:在现实生活中请同学们仔细观察并找出存在两直线平行关系的现象,并思考为什么是这种现象?

  这样设计不但及时巩固了今天所学的知识,而且培养了学生良好的思维习惯,同时也培养了学生搜集信息和处理信息的能力,让学生去了解数学的价值,培养学生用数学的意识。

  7、版面设计:

  本课的版面我主要是以的形式体现的,内容包括平行线的定义、画法、平行公理及平行公理的推论等知识框架。这样使本节内容条理化、系统化,实现了重点突出、图文并茂。

  五、说课综述:

  本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,教师是组织者、引导者、合作者,教师的责任是为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平和教材的特点,选择恰当的教学起点和教学方法。整堂课以问题思维为主线,充分利用直观教具与学具及计算机辅助教学,特别是几何画板,巧妙地把数学实验引进了数学课堂,让学生充分参与数学学习,获得广泛的数学经验,整堂课融基础性、灵活性、实践性、开放性于一体,通过“观察——猜想——探讨——归纳”,把知识形成的过程转化为学生亲自观察、实验、发现、探索、运用的过程,使学生在获得知识的同时提高兴趣,认识自我,增强信心,提高能力。

  说课完毕,谢谢大家!

2、七年级下册《平行线》一等奖说课稿

尊敬的各位评委老师:

  大家好!我是,我说课的题目是《平行线及平行公理》,下面我从教材分析、教学方法和媒体的选择、对学生学法的指导、教学过程的设计和说课综述5个方面进行阐述:

  一、教材分析:

  1、教材的地位和作用:

  平行线及平行公理是初中几何的重要内容,也是本章的重点,主要学习:平行线的定义、画法,平行公理及平行公理的推论,它是在相交线、对顶角、垂线之后编排的,是以小学学过的平行线画法及中学学过的相交线、直线的有关知识为基础进一步学习的问题,重点探讨了定义、画法、公理及推论。特点之一:它揭示了同一平面内的两直线除了相交之外的另一种位置:关系平行,为今后学习平行线的判定和性质以及八年级研究的特殊四边形的有关知识奠定了基础,也为今后证明两直线平行提供了重要方法和依据;特点之二:通过本节课的学习使学生的使的认识由具体到抽象;由特殊到一般;由感性到理性,有助于培养学生思维的严谨性和深刻性,对于培养学生的动手实践能力、视图能力起着重要的作用,所以本段教材承上启下、至关重要。

  2、教学目标的确定

  《数学课程标准》要求:“通过义务教育阶段的数学学习,使学生获得数学重要知识以及基本的数学思想方法和必要的应用技能,了解数学的价值,增进学生对数学的理解和学好数学的信心,具有初步的实践能力。根据本节教材特点,结合七年级学生已具备的初步的几何基础知识,我确定如下教学目标:

  (1)知识目标:了解平行线的意义及平行公理,会用直尺和三角板画平行线,理解平行线的传递性。

  (2)能力目标:通过渗透类比、转化数学思想和方法,培养学生观察、归纳、概括、抽象等思维能力以及视图能力。

  (3)德育目标:向学生渗透数学于实践的辨证唯物主义观点。

  3、教学重点和难点:

  由于平行公理和推论是集合证明两直线平行的重要和依据,而且这些知识的得出有助于培养学生的实践能力,使学生由感性到理性,实现了认识上的飞跃,所以本节课教学重点是:平行公理及推论。但由于七年级的学生接触到几何学习时间不长、内容不多,思维具有单一性,理解能力有限,对于平行公理的推论要真正弄清楚有一定难度,所以我把如何理解平行公理的推论作为本节课的教学难点。

  二、教学方法和媒体的选择

  教无定法,教学有法,贵在得法。选择恰当的教学方法尤为重要。新课程理念强调:我们的课程不仅是文本课程,更是体验课程,它不在只是知识的载体,而是教师引导学生、与学生共同探究新知识的过程,由于七年级的学生好奇心、自我表现欲望高,根据加德纳的多元化智能理论和双主教学原则,结合本段教材特点,我选择的教学方法是:引导发现法,并以电化教学为辅助教学手段。

  引导发现法作为一种启发式教学方法,体现了认知心理学,在教学过程中,教师采取启发式教学方法引导学生动手实践、自主探索与合作交流,以达到学生对知识的发现、形成与巩固,进而实现知识的内化。教学媒体我采用电化媒体,电脑媒体以其形象、颜色等多种形式强化对学生感官的刺激,提高学生的学习兴趣,增强了感性认识,使教学目标更完美的实现,另外,电脑媒体具有良好的交互性,它可以将教师的教学策略和学生的学习思路交互体现,更好地为教学服务。

  三、对学生学法的指导

  通过指导学生运用观察、实践、类比、探索、归纳等方法,使学生获得知识,形成技能,发展思维。

  四、教学过程的设计

  1、结合实际,情景导入

  上课开始教师首先强调前面我们已经学过两直线相交的情形,在同一平面内两直线还有不相交的情形然后教师用展示笔直的两条铁轨、立在路边的两根电线杆。引导学生仔细观察并发现:每个图形的两条直线是不相交的,启发学生:请思考现实生活中还有这样的想象吗?由学生举例,教师指导具有这种位置关系的两条直线就是今天我们要学的平行线(板书课题)。我这样设计的目的是创设情境,激发兴趣,使学生从生活走进数学,自然地渗透数学于实践的观点。

  2、理性归纳,形成概念

  什么叫平行线呢?教师引导学生通过观察、抽象、概括,尝试用几何语言描述图形的特点,师生共同完善表述内容,形成概念,对于学生的积极表现,教师适时给予评价,及时鼓励,使学生增强信心,并给出平行线的符号表示及读法,指出同一平面内两直线的位置关系只有相交或平行。我这样设计的目的是为了充分调动学生的积极性,培养学生的语言表达能力及观察、抽象、概括的能力。

  3、及时反馈,巩固概念

  为了及时巩固概念,我用出示了两道判断题:(1)在同一平面内不相交的线段(2)长方体的两个棱。通过判断可知:长方体的两个棱既不相交也不平行,显然不是平行线,我们把这样的两条直线叫异面直线。我用这两个定义来强调定义中“在同一平面、不相交、两条直线”这些条件缺一不可。这样不但及时巩固概念,同时也培养了学生的视图能力。

  4、动手实践,理性归纳

  对于平行线的公理及推论的教学我是这样设计的:在复习小学平行线的画法的基础上,由学生动手操作:过直线AB外一点P画已知直线AB的平行线,突出“两靠紧,推动”等重要步骤和方法,然后出示练习:按要求作图。用来强化作图技能,用投影展示学生画图,共同评判,然后引导学生在刚才的基本图形上过P再画直线AB的平行线,从而得出此平行线存在的唯一性,进而归纳出平行公理,若过直线AB再画AB的平行线,发现三条直线彼此是平行的,为什么呢?学生讨论,这样突破了教学难点。我这样设计的目的在于充分调动学生参与数学活动的意识,学生通过动手实践、自主探索与合作交流,达到思维碰撞,获得对数学最深切的感受,体会创造之乐,通过推论的'得出,实现了“再创造”的过程,富有成就感,同时也培养了学生动手实践的能力,语言表达能力及团结协作的能力,突出了教学重点,从而突破了教学难点。

  5、反馈练习,巩固所学

  为了及时巩固所学知识,我设计了三个层次的练习题:第一题是判断题,目的是巩固基础知识;第二题是填空题,平行公理的推论的符号表示,旨在培养学生图形与符号的转换能力,同时也发展了学生的符号感;第三题是读语句、画图形,书本P页,旨在检查学生画图技能的形成情况,强化动手操作能力的培养。设计习题力求层层深入、步步递进,既注重双基,又注重能力的培养,使数学教学面向全体,体现了素质教育提出的面向全体的要求。

  6、课堂小结,布置作业

  课堂小结主要由学生完成,教师适时进行重点强调。分两层:第一层是知识和方法的总结:

  (1)本节课学习了那些知识?还有什么疑问?

  (2)平行线是怎么定义的?在同一平面内两条直线有几种位置关系?平行公理和平行公理的推论是什么?

  学生回答后,教师用概括归纳本节课的知识框架,使本节内容一目了然,重点突出。

  第二层是在本节课的学习中学生学习体会和感受方面的总结

  布置作业分两层:

  (1)必做:教科书

  (2)观察与思考:在现实生活中请同学们仔细观察并找出存在两直线平行关系的现象,并思考为什么是这种现象?

  这样设计不但及时巩固了今天所学的知识,而且培养了学生良好的思维习惯,同时也培养了学生搜集信息和处理信息的能力,让学生去了解数学的价值,培养学生用数学的意识。

  7、版面设计:

  本课的版面我主要是以的形式体现的,内容包括平行线的定义、画法、平行公理及平行公理的推论等知识框架。这样使本节内容条理化、系统化,实现了重点突出、图文并茂。

  五、说课综述:

  本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,教师是组织者、引导者、合作者,教师的责任是为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平和教材的特点,选择恰当的教学起点和教学方法。整堂课以问题思维为主线,充分利用直观教具与学具及计算机辅助教学,特别是几何画板,巧妙地把数学实验引进了数学课堂,让学生充分参与数学学习,获得广泛的数学经验,整堂课融基础性、灵活性、实践性、开放性于一体,通过“观察——猜想——探讨——归纳”,把知识形成的过程转化为学生亲自观察、实验、发现、探索、运用的过程,使学生在获得知识的同时提高兴趣,认识自我,增强信心,提高能力。

  说课完毕,谢谢大家!

3、七年级下册《平行线》一等奖说课稿

  一、教材分析

  新《数学课程标准》中将空间与图形安排为一个重要的学习领域,强调发展学生的空间观念和空间的想象能力。本课时是在学生已经认识了线段、射线、直线和角等概念的基础上教学的,也是进一步学习空间与图形的重要基础之一。教学中让学生在具体的生活情景中,充分感知平面上两条直线的平行关系。本课是本单元的第三课时,在认识点到直线的距离、垂直线段的基础上,主要解决平行的概念问题。

  二、学情分析

  四年级学生空间观念及空间想象能力尚不丰富,仍以直观形象思维为主。虽然平行这样的几何图形,在日常生活中应用广泛,学生头脑中已经积累了许多表象,但他们理解概念中的同一平面永不相交比较困难;再加上以前学习的直线、射线、线段等研究的都是单一对象的特征,而平行线研究的是同一个平面内两条直线位置的相互关系,这种相互关系,学生还没有建立表象。这些问题都需要教师帮助他们解决。

  教学目标:

  基于以上的认识,我制定了本课的教学目标:

  1、知识与技能:

  在数学活动中,感知平面上两条直线的平行关系,了解互相平行的概念。

  2、过程与方法:

  使学生经历从现实空间中抽象出平行线的过程,会用语言描述两条直线的平行关系,逐步形成空间观念,发展形象思维。

  3、情感、态度与价值观:

  (1)能积极参加数学活动,对平行现象充满好奇心。

  (2)感受平行在生活中的应用,感受平行美。

  (3)形成实事求是的态度以及进行质疑和独立思考的习惯,激发在生活中应用数学的主动性。

  教学重点:

  结合生活情境,使学生感知在同一平面上两条直线的位置关系,认识平行线。

  教学难点:

  正确理解在同一平面内永不相交的含义。

  三、教学方法

  1、教学方法

  以实践观察总结归纳运用为主线。引导学生通过观察、讨论、归纳、总结出平行的概念,最后以课堂与生活联系来巩固所学知识,加深平行的理解。

  2、学习方法

  本课充分体现学生学习的主体性,让学生分小组合作探究,通过观察、实践、分析、总结、运用等手段使学生在动手、动脑、动口的过程中体验到合作学习的乐趣。

  本节课所用教具学具:课件、木棍。

  四、教学过程设计

  (一)、目标展示

  1.我们学过哪些线?它们有什么特点?

  2.拿出准备的小棒,每根小棒代表一条直线,每两根为一组,请你用这些小棒摆一摆,看看在同一平面内两条直线的位置关系你能摆出几种情况,在练习本上画出来。

  (学生以小组为单位展示预习成果)

  (二)、目标感知

  课件出示同一平面内的两条直线的位置关系

  1.讨论:你能根据它们的位置关系给它们分分类吗?说出分类的理由.

  2.小组汇报。(当学生在汇报过程中出现交叉一词时,教师随即解释:也就是说两条线碰一块儿了。在数学上我们把交叉称为相交,相交就是相互交叉。在分类过程中重点引导学生弄清看似两条直线不相交而事实上是相交的情况。先想象是否相交,再画一画,从而达成共识。)

  3.教师小结:表面上看起来不相交,如果把两条直线无限延长后相交于一点,看来今后不能先看表面现象,要看到其实质.

  4.教师讲解:

  这两组直线表面不相交,延长后也不相交,这才是真正的不相交,这就是我们今天学习的平行线.(板书课题:平行线)

  5.学生尝试概括:什么是平行线?

  6.教师演示不在同一平面内的两根小棒,教师提问:这两条直线延长后相交吗?它们是平行线吗?

  7.师生进一步概括平行线的定义(给重点处加标记)

  学生讨论:平行线应具备哪几个条件?

  (三)、目标达成

  课件出示找一找生活中的平行线。

  (四)、目标累积

  这节课你学到了什么?

  (五)、目标检测

  课件出示检测题,师生共同完成。

  六、目标预览

  1.我们认识了平行线,也找到了很多的平行线。你还能找出什么地方有平行线吗?

  2.你会画平行线吗?需要什么工具吗?预习79、80页借助工具自己尝试画一组平行线。

4、七年级数学下册《平行线的性质》教案一等奖

  【教学目标】

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  【对话探索设计】

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的.一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

5、七年级数学下册平行线的判定教案一等奖

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家整理的七年级数学下册平行线的判定教案,欢迎阅读与收藏。

  教学过程

  一、目标展示

  二、情景导入。

  装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

  要解决这个问题,就要弄清楚平行的判定。

  三、直线平行的条件

  以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?

  三角板经过点P的边与靠在直尺上的边所成的角没有变。

  ∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的.角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

  简单地说:同位角相等,两条直线平行。

  符号语言:∵∠1=∠2∴AB∥CD、

  如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

  用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。

  学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。

  题组一:

  1、叫做平行线。

  如图:a与b互相平行,记作,a。

  2、在同一平面内,两条直线的位置关系b只有与两种。

  3、下列生活实例中:

  (1)交通道路上的斑马线;

  (2)天上的彩虹;

  (3)阅兵队的纵队;

  (4)百米跑道线,属于平行线的有。

  学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

  题组二:

  4、通过画图和观察,可得两个平行公理:

  ①、经过点,一条直线平行于已知直线;

  ②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。

  5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:

  ①、a与b没有公共点,则a与b;

  ②、a与b有且只有一个公共点,则a与b;

  ③、 a与b有两个公共点,则a与b;

  6、过一点画已知直线的平行线有()

  A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条

  教学设计

  1、落实教学常规,践行学校《教师日常教学行为要求》。

  2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。

6、初中七年级下册的平行线的判定数学教案一等奖

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的'判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

7、《平行四边形》八年级下册数学教学设计一等奖

  教材分析

  这节内容通过拼图引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。

  教学目标

  知识目标

  1.理解平行四边形的定义及有关概念

  2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质

  3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明

  能力目标

  1.经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维

  2.在进行性质探索的活动过程中,发展学生的探究能力.

  3.在对性质应用的过程中, 提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力

  情感、态度、价值观目标

  在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。

  教学重点、难点

  1.平行四边形的性质

  2.平行四边形的概念、性质的应用

  3.平行四边形的性质的探究

  教学流程安排

  活动流程活动内容和目的

  活动一、了解四边形与平行四边形的关系

  活动二、了解生活中的平行四边形,理解平行四边形的定义

  活动三、探究平行四边形的边、角之间的关系

  活动四、平行四边形性质的应用

  活动五、评价和反思了解四边形与平行四边形的关系,引出课题

  了解生活中的`平行四边形的形象,抽象出平行四边形的定义

  探究平行四边形的性质

  运用性质进行简单的计算和证明

  学生小结、布置作业

  教学过程设计

  问题与情境师生行为设计意图

  活动一

  问题

  (1)四边形与平行四边形(教材91页章前图)

  (2)四边形与平行四边形有怎样的从属关系?师:介绍四边形与我们生活的密切联系,指出长方形、正方形、梯形都是特殊的四边形

  生:

  (1)利用章前图寻找四边形

  (2)说说自己眼中的四边形

  指明学习任务,理清四边形与特殊的四边形之间的关系,引出课题

  活动二

  问题

  (1)你能举出生活中平行四边形的例子吗?

  (2)平行四边形的定义

  如图,平行四边ABCD

  记作

  ABCD

  教师用多媒体展示图片,

  生欣赏图片,有庭院的竹篱笆,电动伸缩门,活动衣架等

  学生举例

  生结合小学已有的知识以及对图片的观察和思考,归纳:

  两组对边分别平行的四边形是平行四边形,再动手根据定义画出平行四边形

  由现实生活入手,使学生获得平行四边形的感性认识,同时能调动学生的主观能动性,激发好奇心和求知欲

  发展学生的抽象思维能力,

  但是这种抽象的前提是现实生活,避免了强制记忆

  活动三

  问题探究

  根据定义画一个平行四边形,观察这个四边形,除了“两组对边分别平行以”外它的边角之间还有其他的关系吗?度量一下,是否和你的猜想一致?

  (2)你能证明你发现的结论吗?

  师提出问题后深入到小组中参与活动与指导

  生动手画图,猜想,度量,验证,得出

  (1)平行四边形的对边相等

  (2)平行四边形的对角相等,邻角互补

  师提出问题

  小组内交流,并与前面所学知识联系,证明线段和角相等的办法是三角形全等,而四边形问题转化成三角形问题是作对角线

  生独立完成证明,一生板演

  经历猜想—实践---验证的过程,从中体会亲自动手实践学到知识的乐趣,获得成功得体验

  在寻找证明线段和角相等的办法---三角形全等,一方面体会知识的前后连贯性,另一方面意在培养学生良好的学习习惯

  完成证明,培养学生的推理能力以及严谨的学习态度

  活动四

  问题

  例1.小明用一根36米长的绳子围成一个平行四边形场地,其中一边长16米,其它三边长多少?

  (2)学生反馈练习

  教材93页

  练习1、2、3题

  师引导学生审题

  生弄清题意后

  师示范解题过程

  强调平行四边形性质的几何表达

  在

  ABCD

  ①AB∥CD AD∥BC

  ②AB=CD AD=BC

  ③∠A=∠C ∠B=∠D

  生练习,师指导

  引导学生学会审题,这是解题的关键,同时体会生活中处处有 数学

  训练学生能清晰有条理的表达自己的思考过程,做到“言之有理,落笔有据”

  练习,实践,巩固所学知识,了解教学效果

  活动五

  理一理

  1. 通过学习,本节课你学到了那些知识?

  2. 在对平行四边形性质的探究过程中,你有那些认识?

  3. 在应用平行四边形性质解题时,应注意哪些问题?

  布置作业:教材99页第1题,第2题,第6题

  生交流获得的知识和得到的感受

  师聆听,与生交流

  课后独立完成

  通过整理,一方面让学生理清本节课的知识结构,另一方面感受探究过程的乐趣,体验克服困难的勇气树立自信心。

  通过复习,完成作业,进一步巩固提高知识。

8、八年级数学下册《平行四边形》教案一等奖设计

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

  学生准备:复习平行四边形性质;学具:课本“探究”内容.

  学法解析

  1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

  2.知识线索:

  3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1.平行四边形定义是什么?如何表示?

  2.平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1.两组对边分别平行的.四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

  学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

9、八年级数学下册《平行四边形》教学设计一等奖

  教学目标:

  1、 认知目标:使学生通过操作,初步认识平行四边形,感知平行四边形的特征,会在方格纸上画平行四边形。

  2、 能力目标:培养学生做中学的能力和抽象概括能力。

  3、 情感目标:使学生形成初步的空间观念,感受数学与生活的联系。

  教学重点:探究平行四边形的特征。

  教学难点:会在方格纸上画平行四边形。

  教具准备:硬直条做成的长方形、三角形、方格纸、8根吸管(6根长、2根短)剪刀等。

  教学过程:

  (一)创设情境,复习导入。

  1、师:同学们,上节课我们认识了四边形,谁来说说四边形有什么特点?

  2、师:我们学过的平面图形中,哪些图形是四边形?

  3、出示一个长方形框架,师:谁来说说长方形有哪些特征?

  (长方形对边相等,四个角都是直角)

  赵老师会变魔术,我只要轻轻一动就能把这个长方形变成什么图形?请同学们仔细观察,变,师边说边拉动长方形框架,提问:现在变成了什么图形?(平行四边形)对,这节课我们就来认识平行四边形。

  板书课题:平行四边形。

  (二)引导发现,合作探究

  (1)观察比较,感悟变化

  1、请同学们再观察一遍,(师再演示一遍)长方形变成了平行四边形,你还发现了什么?你认为平行四边形的边和角有什么变化?

  生1:我发现了长方形的一组对边变倾斜了,它们的对边还是相等的。

  生2:我发现没有直角了,平行四边形有两个钝角和两个锐角。

  师:你观察得真仔细。

  (2)动手操作,感悟特征

  1、刚才小朋友通过观察发现了平行四边形的这些特点,但这是用眼睛看的,是不是准确呢?你们想通过做实验来验证吗?下面我们就一起来验证平行四边形的特点。

  探索平行四边形的特征。你们可以借助剪刀、直尺、三角板、活动角等工具,想办法来验证平行四边形的特点,看能不能发现平行四边形的其它秘密,比一比哪一组想出来的方法最多?(小组实验。)

  2、汇报:小组派代表说说你是用什么办法验证平行四边形的特点?

  生1:我用尺子量,发现了平行四边形对边相等。

  生2:我们采用对折的方法,也发现了平行四边形对边相等。

  生3:我用剪刀沿平行四边形的对角线剪下来,变成了两个完全一样的三角形,把两个三角形重合在一起,我发现了它的对边相等,一组对角也相等。

  师:太棒了,这种方法不仅能证明平行四边形的对边相等(板书:对边相等),还发现了平行四边形的对角相等,谁还发现了平行四边形的角的特点?

  生4:我用活动角先量平行四边形的一个角,再去量另一个对角,发现它的对角相等。

  生5:我用剪刀把平行四边形的一个角剪下来,把这个角和它的对角比,发现两个角重合在一起,另个一组对角也用相同的方法来做,我们发现了平行四边形的对角相等。

  师:能想出这么棒的'办法来,真不简单。(板书:对角相等)

  3、小结:小朋友可真了不起,先观察推测出平行四边形的特点,再自己动手做实验,验证并发现了平行四边形的这些特点,现在谁能用自己的话完整地说一说平行四边形的特点?

  生:平行四边形的对边相等,对角相等。

  那平行四边形还有哪些特点呢?

  4、课件出示:这是哪?(出示学校门口伸缩铁门)你发现了什么?

  生:铁门能伸缩。

  师:这个铁门为什么能伸缩?我们再来做一个实验。

  用小棒做一个三角形和一个平行四边形,再拉拉看,然后互相交流一下,你发现了什么?

  汇报。请两个同学把你们拼的三角形和平行四边形拿上来拉拉看。

  生:三角形拉不动,平行四边形一拉就变形。

  师:老师在这个平行四边形的对角再摆一根小棒,变成了什么?

  生:变成了两个三角形。

  师:你再拉拉看,你发现了什么?

  生:这样平行四边形就拉不动了。小结:三角形不易变形,比较稳定;平行四边形不稳定,容易变形。(板书:易变形)铁门能伸缩就是应用了平行四边形容易变形的特性。

  (三)巩固提高

  1、看来同学们已经和平行四边形交上朋友了,现在老师想来考考大家,请看屏幕(课件):下面哪些图形是平行四边形?老师随意指到一个图形,请同学们打手势,比一比哪个同学的反应最快?

  2、知道了平行四边形的特征,你们能动手做出一些平行四边形吗?

  生1:老师,我们组是动手画的平行四边形。(请小组内的代表上台演示)

  生2:老师,我们组是动手剪的平行四边形。(请小组内的代表上台演示)

  生3:老师,我们组是在钉子板上做出的平行四边形。(请小组内的代表上台演示)

  师:刚才我们请个别同学介绍了他们的方法,如果有的同学还有不同的方法就和同学交流一下,如果刚才有的同学不会做的就选折一种同学们介绍的方法,自己动手做一个。(师个别指导)

  3、拓展练习

  (1)数一数下面图形中共有( )平行四边形。

  (2)把下面的图形改为平行四边形。

  (四)课堂总结,巩固新知

  通过本节课的学习,你们学会了什么?还有什么问题吗?

10、二年级数学下册《平行四边形》的优秀教学设计一等奖

  教材简析:

  这部分内容主要是认识平行四边形及其基本特征。第一道例题首先从学生的生活实际入手,选取了一些日常生活中学生能够接触的物体图片,让学生从中找出平行四边形;再要求学生“说说生活中哪些地方能看到平行四边形”,从而激活学生已经积累的有关平行四边形的感性认识。接着,让学生“想办法做出一个平行四边形”,并相互交流,使学生在都手操作中进一步感知平行四边形的基本特征。在此基础上,抽象出平行四边形的基本特征。第二道例题通过让学生量出平行四边形两条对边间的距离,引导学生认识平行四边形的高和底,揭示高和底的含义。

  教学重点:

  1.探索平行四边形的基本特征;2.画出平行四边形的高。

  教学目标:

  1.让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,知道平行四边形两组对边分别平行,知道平行四边形对边相等;认识平行四边形的高和底,会画出平行四边形的高。

  2.让学生在学习活动中,提高动手能力,发展空间观念。

  3.让学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的`学习兴趣。

  教学准备:

  三角板、学具盒

  教学过程:

  一、探索平行四边形的基本特征

  1.学生从学具盒里拿出可拼搭的小棒。(共5根,从中选4根)拼成一个长方形。

  交流:你从5根中选4根的时候是怎么想的?为什么?

  说说长方形边有什么特点?角呢?

  板书:边:对边相等

  角:4个都是直角

  2.老师操作:把长方形变成了平行四边形

  问:现在这个图形还是长方形吗?为什么?

  (4个角不是直角了,就不是长方形了。)

  你知道它是什么图形吗?

  板书课题:平行四边形

  通过刚才的变化过程,你能说说平行四边形有哪些特点吗?

  板书:对边相等,对角相等(2个锐角、2个钝角)

  3.继续在原来的基础上得到更多的平行四边形。

  问:与三角形的稳定性相比,平行四边形怎么样?

  利用它容易变形的特点,生活中有广泛的应用。

  举例:校门口的拉门。你还能说一些吗?

  4.做平行四边形:

  (1)用橡皮筋围平行四边形。

  (2)在点子图上画平行四边形。

  老师注意巡视,并请学生交流思考的方法,强调平行四边形的基本特征。

  5.老师在黑板上,结合特点画一个平行四边形。

  二、画平行四边形的高

  1.板书:高

  问:你联想到什么?(高要和底对应、垂直、直角标记……)

  在下面的边上写:底

  以这条边为底,你知道它的高怎么找?(指名拿三角板比画)

  可能:直角边和底重合,另一直角边和顶点重合。

  问:有没有别的方法?

  通过移动三角板,画出若干条高,问:这样的高有多少条?(无数条)

  学生画出点子图上平行四边形的高。

  2.试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?

  指出:可以任意地找一边为底,底和高是相对的。

  三、练习:

  1.下面哪些图形是平行四边形?如果不是的,说说理由。

  2.你会用两块完全一样的三角尺拼成一个平行四边形吗?用四块完全一样的三角尺呢?

  学生拼,老师注意请生展示。

  3.右边是用七巧板中的三块拼成的平行四边形。你能移动其饿一块将它改拼成长方形吗?

  4.取一张平行四边形形状的纸,你能剪一刀,把它拼成一个长方形吗?

  有几种剪法?说说它们有什么共同点?

  5.画出下面每个平行四边形底边上的高

相关文章

推荐文章