初中七年级下册的平行线的判定数学教案一等奖
1、初中七年级下册的平行线的判定数学教案一等奖
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的'判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题) (第2题)
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
2、初中七年级下册的平行线的判定数学教案一等奖
作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家整理的七年级数学下册平行线的判定教案,欢迎阅读与收藏。
教学过程
一、目标展示
二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的.角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、
如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。
学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。
题组一:
1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的位置关系b只有与两种。
3、下列生活实例中:
(1)交通道路上的斑马线;
(2)天上的彩虹;
(3)阅兵队的纵队;
(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:
4、通过画图和观察,可得两个平行公理:
①、经过点,一条直线平行于已知直线;
②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:
①、a与b没有公共点,则a与b;
②、a与b有且只有一个公共点,则a与b;
③、 a与b有两个公共点,则a与b;
6、过一点画已知直线的平行线有()
A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条
教学设计
1、落实教学常规,践行学校《教师日常教学行为要求》。
2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。
3、初中七年级下册的平行线的判定数学教案一等奖
【教学目标】
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
【对话探索设计】
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的.一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业
P25.1、2、3
〖补充作业
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
4、初中七年级下册的平行线的判定数学教案一等奖
本节课是在学生已掌握直线特点和点到直线的距离的基础上进行教学的。本节课我总共设计了五大环节:
一、创设情境,感知平行。
二、观察思考,寻找平行。
三、动手操作,创造平行。
四、总结收获,拓展延伸。
五、布置作业。
教学重点是学生通过探究得出平行线的特点,认识平行线和画平行线。难点是通过学生动手操作归纳总结平行线之间所有垂线段长度都相等这一性质。 回顾这节课的教学情况,我觉得自己有得有失。得:
1、环节的'设计上由浅入深,有梯度,环节过渡较为自然流畅,注重对学生课堂积极性的调动和学生的互动,能做到适时鼓励点评,课堂气氛较为活跃。
2、利用网络课件,是本节课的一大亮点。结合平行线教材特点,充分发挥信息技术生动活泼、内容丰富、形式多样的优势,通过课件的设计运用,最大限度激发学生的学习兴趣,调动学生积极性,使学生在不知不觉中学会知识,提高能力。
失:在画平行线和探究平行线性质的教学中,如果能设置恰当的教学情景,放手让学生自己发现、自己归纳、自己体验,那肯定比教师直接抛出问题,更能调动学生的兴趣。但是对于四年级的学生来说自己发现探索出其中的规律来实在有相当大的难度。所以究竟以怎样的方式把这两个知识点呈现给学生,还需要继续探讨和研究。
5、初中七年级下册的平行线的判定数学教案一等奖
教材简析:
这部分内容主要是认识平行四边形及其基本特征。第一道例题首先从学生的生活实际入手,选取了一些日常生活中学生能够接触的物体图片,让学生从中找出平行四边形;再要求学生“说说生活中哪些地方能看到平行四边形”,从而激活学生已经积累的有关平行四边形的感性认识。接着,让学生“想办法做出一个平行四边形”,并相互交流,使学生在都手操作中进一步感知平行四边形的基本特征。在此基础上,抽象出平行四边形的基本特征。第二道例题通过让学生量出平行四边形两条对边间的距离,引导学生认识平行四边形的高和底,揭示高和底的含义。
教学重点:
1.探索平行四边形的基本特征;2.画出平行四边形的高。
教学目标:
1.让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,知道平行四边形两组对边分别平行,知道平行四边形对边相等;认识平行四边形的高和底,会画出平行四边形的高。
2.让学生在学习活动中,提高动手能力,发展空间观念。
3.让学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的`学习兴趣。
教学准备:
三角板、学具盒
教学过程:
一、探索平行四边形的基本特征
1.学生从学具盒里拿出可拼搭的小棒。(共5根,从中选4根)拼成一个长方形。
交流:你从5根中选4根的时候是怎么想的?为什么?
说说长方形边有什么特点?角呢?
板书:边:对边相等
角:4个都是直角
2.老师操作:把长方形变成了平行四边形
问:现在这个图形还是长方形吗?为什么?
(4个角不是直角了,就不是长方形了。)
你知道它是什么图形吗?
板书课题:平行四边形
通过刚才的变化过程,你能说说平行四边形有哪些特点吗?
板书:对边相等,对角相等(2个锐角、2个钝角)
3.继续在原来的基础上得到更多的平行四边形。
问:与三角形的稳定性相比,平行四边形怎么样?
利用它容易变形的特点,生活中有广泛的应用。
举例:校门口的拉门。你还能说一些吗?
4.做平行四边形:
(1)用橡皮筋围平行四边形。
(2)在点子图上画平行四边形。
老师注意巡视,并请学生交流思考的方法,强调平行四边形的基本特征。
5.老师在黑板上,结合特点画一个平行四边形。
二、画平行四边形的高
1.板书:高
问:你联想到什么?(高要和底对应、垂直、直角标记……)
在下面的边上写:底
以这条边为底,你知道它的高怎么找?(指名拿三角板比画)
可能:直角边和底重合,另一直角边和顶点重合。
问:有没有别的方法?
通过移动三角板,画出若干条高,问:这样的高有多少条?(无数条)
学生画出点子图上平行四边形的高。
2.试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?
指出:可以任意地找一边为底,底和高是相对的。
三、练习:
1.下面哪些图形是平行四边形?如果不是的,说说理由。
2.你会用两块完全一样的三角尺拼成一个平行四边形吗?用四块完全一样的三角尺呢?
学生拼,老师注意请生展示。
3.右边是用七巧板中的三块拼成的平行四边形。你能移动其饿一块将它改拼成长方形吗?
4.取一张平行四边形形状的纸,你能剪一刀,把它拼成一个长方形吗?
有几种剪法?说说它们有什么共同点?
5.画出下面每个平行四边形底边上的高
6、七年级数学下册《平行线判定》教学反思
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
3、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。本节课对初一学生而言,本是又一个艰难的'起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。
7、人教版七年级数学下册《平行线判定》教学反思
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。
8、人教版七年级数学下册《平行线判定》教学反思
平行线的`画法入手,引入平行线的判定方法1。
在此基础上提出:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
在整个教学过程中,充分发挥学生的主体作用,使学生在探索和合作交流的过程中发现知识、巩固知识、形成能力,教师在此过程中扮演了参与者、合作者、引导启迪者的角色。
教学时要多鼓励学生之间的交流,鼓励他们表达各自的发现,及对发现的合理解释,并在交流中选择合适的解决问题的策略,丰富学生的活动经验,提高思维水平。
9、七年级数学下册《相交线与平行线》教学反思
这一周的教学进度异常缓慢,我的教与学生的学都十分艰难,这一章是《相交线和平行线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,但是经过这一周的攻坚战,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美、逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。
这一良性变化证明了教学中几点收获:
1、适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2、在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的.缓冲地带,不可一步到位。
3、精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
4、多对学生的错题进行辨析,多对学情分析反馈;
5、强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
10、八年级数学下册《平行四边形判定》教学的反思
一、教学设计思路:
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
二、教学完成情况:
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
三、满意与不足之处:
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。
四、改进措施:
作为一个刚毕业一年的`老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
11、八年级数学下册《平行四边形判定》的教学反思
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
由于自身数学知识系统与教学经验的`缺乏,在本节中也出现了较多的问题:
1.学生的想法有时老师是无法预测的,尽管看似一个较简单的问题,由于学生自身个体因素的差异,给出的解决方案可能是错的,也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。
2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。
3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。
4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。
5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。
12、七年级数学下册《5.3平行线的性质》的教学反思
第五章平行线的性质内容,是在学生学习平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生的思考,进而引导学生进行平行线性质的探索。
本节课最突出的是平行线性质的得到过程,不是教师将学生听得到的.,而是学生通过自主探索、实验、验证发现的,即在学生充分活动的基础上,由学生自己发现的,并用自己的语言来归纳的,这对学生增强学习的兴趣和学习的自信心都很有好处,而两次探索情景的引导又不尽相同,第一次探究“两直线平行,同位角相等”着重面向全体学生,让全体学生都能参与的到探究活动中来,因此先安排了一个“探究步骤的”探索,而第二次探究“两直线平行,内错角相等”“两直线平行,同旁内角互补”,则更是强调学生的自主学习,强调学生在学习过程的自主、自控学习过程。
知识的拓展部分又助于学生加深对平行线性质的理解,区分性质与判定方法的区别与联系,以及对三个性质之间内在的联系的理解,同时也是为平行线性质的运用大好基础。