教案

一元二次方程直接开平方法的教案一等奖

2023-08-23 13:11:12

  一元二次方程直接开平方法的教案一等奖

一元二次方程直接开平方法的教案一等奖

1、一元二次方程直接开平方法的教案一等奖

  教学目标

  1。 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

  2。知道形如(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

  3。 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

  教学重点及难点

  1、 用直接开平方法解一元二次方程;

  2、理解直接开平方法中的整体思想,懂得(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解

  教学过程设计

  一、情景引入,理解方法

  看一看:特殊奥林匹克运动会的会标

  想一想:

  在2006年的'特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,XX学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

  解:由题意得: x2=144

  根据平方根的意义得:x=± 12

  ∴原方程的解是:x1=12 , x2=—12

  ∵边长不能为负数

  ∴x=12

  了解方法:

  上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

  【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。.

  第三阶段:怎样解方程(1+x)2=144?

  请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

  第四阶段:众人齐心当考官!

  请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程.

  1、分析学生所编的方程.

  2、从学生的编题中挑出一个方程给学生练习.

  3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

  4(x+1)2-144=0

  归纳:形如(px+q)2=(p≠0,≥0)的一元二次方程都可以用直接开平方法解。

  【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

  三、巩固方法,提高能力

  请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

  ⑴ x2=3 ⑵ 3t2—t=0

  ⑶ 32=27 ⑷ (—1)2—4=0

  ⑸ (2x+3)2=6 ⑹ x2=36x

  四、自主小结

  今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

2、一元二次方程直接开平方法的教案一等奖

  教学目标:

  (一)知识与技能:

  1、理解并掌握用配方法解简单的一元二次方程。

  2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

  (二)过程与方法目标:

  1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

  2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

  (三)情感,态度与价值观

  启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

  教学重点、难点:

  重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

  难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。

  教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。

  教学过程

  教学过程

  教学内容

  学生活动

  设计意图

  一 复习旧知

  用直接开平方法解下列方程:

  (1)9x2=4 (2)( x+3)2=0

  总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

  二 创设情境,设疑引新

  在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

  例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

  三 新知探究

  1 提问:这样的方程你能解吗?

  x2+6x+9=0 ①

  2、提问:这样的方程你能解吗?

  x2+6x+4=0 ②

  思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

  归纳总结配方法:

  通过配成完全平方式的`方法,得到一元二次方程的解,这样的解法叫做配方法。

  配方法的依据:完全平方公式

  配方法的关键:给方程的两边同时加上一次项系数一半的平方

  点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

  四 合作讨论,自主探究

  1、 配方训练

  (1) x2+12x+( )=(x+6)2

  (2) x2-12x+( )=(x- )2

  (3) x2+8x+( )=(x+ )2

  (4) x2+mx+( )=(x+ )2

  强调:当一次项系数为负数或分数时,要注意运算的准确性。

  2、将下列方程化为(x+m)2=n

  (n≥0)的形式并计算出X值。

  (1)x2-4x+3=0

  (2)x2+3x-1=0

  解:X2-4X+3=0

  移向:得X2-4X=-3

  配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)

  即:(X-2)2=1

  开平方,得:X-2=1或X-2=-1

  所以:X=3或X=1

  方程(2)有学生完成。

  3、巩固训练:课本55页随堂练习第一题。

  五 小结

  1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

  2、用配方法解二次项系数为一的一元二次方程的一般步骤:

  (1) 移项(常数项移到方程右边)

  (2) 配方(方程两边都加上一次项系数的一半的平方)

  (3) 开平方

  (4) 解出方程的根

  六 布置作业

  习题2.3第1,2题

  两个学生黑板上那解题,剩余学生练习本上计算。

  学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得

  x(10-x)=9

  但是发现所列方程无法用直接开平方法解。于是引入新课。

  学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。

  方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。

  在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:

  x2+6x=-4

  x2+6x+9=-4+9

  (x+3)2=5

  从而可以用直接开平方法解,给出完整的解题过程。

  在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。

  检查学生的练习情况。小组合作交流。

  学生归纳后教师再做相应的补充和强调。

  学生分组完成方程(2)和课后随堂练习第一题

  学生分组总结本节课知识内容。

3、一元二次方程直接开平方法的教案一等奖

  一、教学目标

  1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

  2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。

  二、重点·难点·疑点及解决办法

  1.教学重点:的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程当中产生增根的原因。

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

  2.例题讲解

  例1 解方程。

  分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根。

  ∴ 原方程的根是。

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2 解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  ∴ 原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

  例3 解方程。

  分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.

  解:设,那么,于是原方程变形为

  两边都乘以y,得

  解得

  。

  当时,,去分母,得

  解得;

  当时,,去分母整理,得

  ,

  检验:把分别代入原方程的分母,各分母均不等于0。

  ∴ 原方程的根是

  ,。

  此题在解题过程当中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。

  巩固练习:教材P49中1、2引导学笔答。

  (二)总结、扩展

  对于小结,教师应引导学生做出。

  本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。

  本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。

  此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。

  四、布置作业

  1.教材P50中A1、2、3。

  2.教材P51中B1、2

  五、板书设计

  探究活动1

  解方程:

  分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

  设,则原方程变为

  ∴

  ∴或无解

  ∴

  经检验:是原方程的解

  探究活动2

  有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.

  解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4· )占原来农药 ,故

  整理,

  (舍去)

  答:桶的容积为40升.

4、一元二次方程直接开平方法的教案一等奖

  教学目标

  (一)教学知识点

  1、能够利用二次函数的图象求一元二次方程的近似根。

  2、进一步发展估算能力。

  (二)能力训练要求

  1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

  2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的'思路,体验数形结合思想。

  (三)情感与价值观要求

  通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

  教学重点

  1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2、能够利用二次函数的图象求一元二次方程的近似根。

  教学难点

  利用二次函数的图象求一元二次方程的近似根。

  教学方法

  学生合作交流学习法。

  教具准备

  投影片三张

  第一张:(记作2。8。2A)

  第二张:(记作2。8。2B)

  第三张:(记作2。8。2C)

  教学过程

  Ⅰ、创设问题情境,引入新课

  [师]上节课我们学习了二次函数y=ax2+bx+c(a0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。但是在图象上我们很难准确地求出方程的解,所以要进行估算。本节课我们将学习利用二次函数的图象估计一元二次方程的根。

5、一元二次方程直接开平方法的教案一等奖

  教学任务分析

  教学目标

  知识技能

  1、 理解一元二次方程的概念。

  2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。

  教学思考

  1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。

  2、 通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

  3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。

  解决问题

  在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的'感性认识。

  情感态度

  1、培养学生主动探究知识、自主学习和合作交流的意识。

  2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。

  重点

  一元二次方程的概念及一般形式。

  难点

  1、由实际问题向数学问题的转化过程。

  2、正确识别一般式中的“项”及“系数”。

  教学流程安排

  活动流程图

  活动内容和目的

  活动1

  创设情境 引入新课

  活动2

  启发探究 获得新知

  活动3

  运用新知 体验成功

  活动4

  归纳小结 拓展提高

  活动5

  布置作业 分层落实

  复习一元一次方程有关概念;通过实际问题引入新知。

  通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。

  巩固训练,加深对一元二次方程有关概念的理解。

  回顾梳理本节内容,拓展提高学生对知识的理解。

  分层次布置作业,提高学生学习数学的兴趣。

6、《解一元二次方程配方法》的教学反思

  本学期我接的是初三的本地班,因此从开学到现在我在班里上课还不能很好地适应;这种适应包括两个方面,一方面,学生不能很好的接受我,毕竟以前的老师已经教过他们两年的时间了,在感情上还是行为习惯上都不能很快地接受。另一方面,我以前教的是内初班,他们和我们本地的孩子还是有很大的区别的;接受能力不同,成长环境不同,处事的方式也不同;总之有很多的不同;我在试图改变,但是我的改变还是跟不上需要;所以我也很不适应。以至于我的课现在上的很头疼,也许也很失败.

  我这节课是一元二次方程解法的第二节课——配方法,内容不多,重点是学生的练习,让学生在完成自学检测的过程中总结出方法,熟练用配方法解一元二次方程的一般步骤;在经历配方法的探索中培养学生的动手解决问题的能力;理解解方程中的程序化,体会化归思想。

  在整节课的实际和进行的过程中,我比较满意的是以下几个方面:

  一、这节课基本是按“1:1有效教学模式”来进行的;在时间方面,这节课保证了学生有足够的时间进行练习。自从我参加“1:1有效教学模式”以来,一直不放心彻底把时间还给学生,但在这一年多的实践中我发现,只有真正把时间还给学生,我们的“1:1有效教学模式”才能够真正达到我们想要的效果。因为学习始终是学生自主的行为,如果学生的自主性得不到发展,学生一直是被动地学习,他们不积极,老师在课堂上很累。但在这节课中重点是学生练习,总结方法和规律;很多东西虽然掌握的层次不同,但都是他们真正掌握的知识。

  二、课时内容中对用配方法解一元二次方程的一般步骤总结的比较到位,同时也板书的黑板上;学生在解题时可以很好地对照,使他们感觉解决这样的问题是很容易的。

  三、在课堂练习的过程中对学生的书写规范要求比较到位;在我对数学课程的理解中,我认为规范是非常重要的,在做题的过程中,书写格式正确可以减少很多不必要的失误。

  但是通过这节课,我也发现了我在课堂教学中的很多不足:

  一、面对学生,我的教学语言中存在很多问题;语言生硬,命令口气比较多,很容易引起学生的反感,甚至对立。学生在课堂中的学习,应该是在很轻松的环境中,他们的学习状态才能更好,学习积极性得以提高。因此在课堂上应该多一些鼓励性质的语言,少一些责备性的语言,即使他们做的不够好。

  二、“1:1有效教学模式”的理解不够深,合作解疑和激励引导环节一直处理不好;在“1:1有效教学模式”中,这两个方面看起来不是很重要,往往容易忽视,我在课堂中就是这样。但是我慢慢发现,合作解疑环节处理好,才可以使学生真正掌握这节课的重点,突破难点;在这里他们的思维可以得到充分拓展。而激励引导可以调动学生的积极性,使他们的学习有成就感。但是这方面我做的一直不够。

  三、对于这节课,我在题目的设计方面下的工夫不够;无论是自学检测,还是总结检测,它们是学生掌握这节课重要内容的主要载体;题目设计不但要精,还要具有针对性,让学生不做无用功,而又要把所有的知识点通过题目深刻理解。

  四、在课下与学生交流太少,使得学生在课堂上不是很愿意和你配合;学生毕竟是孩子,他们有时对老师的'谆谆教诲不能理解,你对他们的期望高,要求严,很多情况下换来的是他们的反感与对立。因此我们对于一部分学生最好还是采用“诱教”的方式,没有必要生气或责备。另外我们一定要在课内外对学生进行感情的培养,使他们很乐意学习你教的课程。特别是对“1:1有效教学模式”,学生如果不学,我们的有效将无从谈起。

  一节课或几节课或许对我的教学没有多大的帮助,但是只要我能够在教学中不断的摸索,不断地寻找不足,改进不足,我相信就象我新接班一样,一切都会不断变好的。对于“1:1有效教学模式”的实验和试行也是一样。很多老师都说他们不知道“1:1有效教学模式”该如何去实行,他们好象不会上课了;但是在我听课的过程中我发现,他们的“1:1有效教学模式”进行的越来越顺利,而且效果也确实越来越好。我也希望在我的不断摸索中我的教学也能够有所前进。

7、《配方法解一元二次方程》的数学教学反思

  我们知道配方法的含义是把方程的一边配方化为一个完全平方式,另一边化为非负数,由此我们想到怎样把一个二次三项式配方,并判断其取值范围。

  例1:用配方法证明a2-a+1的值总为正数。

  分析:直接判断a2-a+1>0有困难,下面我们用配方法试一试。

  证明:∵a2-a+1=(a2-a)+1

  =(a2-a+1/4)+1-1/4

  =(a-1/2)2+3/4

  ∵(a-1/2)2≥0

  ∴(a-1/2)2+3/4>0

  ∴a2-a+1>0

  即:a2-a+1的值恒大于0.

  上面是对二次项系数为1的.二次三项式进行讨论,下面我们来看看二次项系数不为1的情况。

  例2:证明:-10y2-7y-4<0

  分析:直接证明上式较困难,我们来试一试配方法,先把二次项和一次项结合在一起,然后把二次项系数化为1,再在括号里加上一次项系数一半的平方,常数项多了就减,少了就加。

  证明:∵-10y2-7y-4=(-10y2-7y)-4

  =-10(y2+7/10y)-4

  =-10(y2+7/10y+49/400)-4+49/40

  =-10(y+7/20)2-11/40

  =-[10(y+7/20)2+11/40]

  ∵10(y+7/20)2≥0

  ∴10(y+7/20)2+11/40>0

  ∴-[10(y+7/20)2+11/40]<0

  即:-10y2-7y-4<0

  通过上两例,我们知道可以把二次三项式进行配方,求其取值范围。

8、配方法解一元二次方程教学反思

  在“一元二次方程”这一章里,《配方法》是作为解一元二次方程的第三种解法出现的,学生往往会把配方法和前面学过的直接开平方法以及因式分解法等同理解,所以在用配方法解题时只是简单模仿老师的解题步骤,对为什么要配方理解不到位,因此在需要用配方法证明一个代数式一定为正数或负数时往往不知所措。而我认为配方法更多的是一种代数式变形的技巧,她可以为解一元二次方程服务,但不仅仅只是一种解方程的`方法。事实上,一个一元二次方程在配方后还是要结合直接开平方法才能解出方程的解。

  我在讲这部分内容时遇到这样的题目:“试说明代数式的值恒大于0”时,考虑到学生理解上会有问题,我把这个问题肢解为如下几个小问题来处理:

  师:“代数式的值恒大于0”中的“恒大于0”是什么意思?

  生:就是永远大于0的意思。

  师:你见过无论字母取什么值时值都大于0的代数式吗?试举例。

  (学生交头接耳,有人明显不相信,也有少数人想到,显得很得意的样子…)

  生:比如,等

  (其余同学豁然大悟,原来并不陌生,接触过很多了,还可以说出很多类似的多项式)

  师:所给代数式与你所举的例子间有什么差异?哪一种形式更有利于说明“恒大于0”?

  生:当然是所举的例子的形式更方便说明代数式恒大于0。

  师:那么如何把原代数式的形式写成你们所举例子的形式呢?

  生:配方!

  ……

  如此处理,则把原来一个比较难理解的问题分解为一个个学生能理解的小问题逐个击破,学生不但对这类题目理解深刻,并且也对配方法的意义理解更深刻了,从课后作业看,效果良好。

9、、《用配方法解一元二次方程》教学反思

  配方法不仅是解一元二次方程的方法之一既是对前面知识的复习也是其它许多数学问题的一种数学思想方法,其发挥的作用和意义十分重要。原以为学生不容易掌握。谁知从学生的学习情况来看,效果普遍良好。从本节课的具体教学过程来分析,我有以下几点体会。

  1、善于引导学生发现规律,注重培养学生的观察分析归纳问题的能力。首先复习完全平方公式及有关计算,让学生进行一些完形填空。然后让学生注意观察总结规律,然后小组总结交流得出结论。即配方法的具体步骤:

  ①当二次项系数为1时将移常数项到方程右边。

  ②方程两边同时加上一次项系数一半的平方。

  ③化方程左边为完全平方式。

  ④(若方程右边为非负数)利用直接开平方法解得方程的根。这样一来学生就很容易掌握了配方法,理解起来也很容易,运用起来也很方便。

  2、习题设计由易到难,符合学生的认知规律。在掌握了二次项系数为一的后。提出问题:当二次项系数不为一时你会用配方法解决吗?不少学生立即答道把系数化为一不就够了吗。于是学生很快总结出 用配方法解一元二次方程的一般步骤:

  ①化二次项系数为1。

  ②移常数项到方程右边。

  ③方程两边同时加上一次项系数一半的平方。

  ④化方程左边为完全平方式。

  ⑤(若方程右边为非负数)利用直接开平方法解得方程的根。

  3、恰到好处的设置悬念,为下节课做铺垫。我问学生配方法是不是可以解决“任何一个”一元二次方程?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”,而例如x+2x=0,4x+4x+1=0,2y-3y+3=0这些方程用“配方法”的话就相当麻烦,不如用“求根公式”或“因式分解”来解简单,这些方法后面我们将要进一步学习。由此,我抓住这个契机向学生引申:解决一个问题的途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。

  4、在我本节课的教学当中,也有如下不妥之处:

  ①对不同层次的学生要求程度不适当。

  ②在提示和启发上有些过度。

  ③为学生提供的思考问题时间较少,导致少数学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

10、、《用配方法解一元二次方程》教学反思

  终于是第二次拿着自己准备的课件再次走上了期许已久的三尺讲台。周二的第五节课虽然只有短短是35分钟,但是这却是自我感觉最好的一堂课——《配方法讲一元二次方程》。这是一元二次方程解法的第二课时,其实总的内容并不是很多,而且对于初中课堂来说课堂的重点是老师的讲解和学生的练习要相互结合,最好能让学生在完成自学检测的过程中总结出方法,熟练用配方法解一元二次方程的一般步骤。尽可能让同学在经历配方法的探索中培养学生的动手解决问题的能力,理解解方程中的程序化,体会化归思想。 在整节课的实际和进行的过程中,我比较满意的是以下几个方面:

  一、这节课基本是按“1:1有效教学模式”来进行的;在时间方面,这节课保证了学生有足够的时间进行练习。自从我观摩了西南大学附属中学的翻转课堂以来,从这里面得到了一个道理:只有放心彻底把时间还给学生,学生的自主能动性才能得到充分的.发展。因为学习始终是学生自主的行为,如果学生的自主性得不到发展,学生一直是被动地学习,他们不积极,老师在课堂上很累。但在这节课中重点是学生练习,总结方法和规律;很多东西虽然掌握的层次不同,但都是他们真正掌握的知识。

  二、课时内容中对用配方法解一元二次方程的一般步骤总结的比较到位,学生在解题时,PPT上的例题解题过程都会保留在屏幕上,所以可以很好地对照,使他们感觉解决这样的问题是很容易的。从二次项系数是1的类型过度到二次项系数是2的方程求解,运用矛盾激发学生思考遇到二次项系数是2的方程要先将二次项系数化1 。

  但是通过这节课,我也发现了我在课堂教学中的一切不足,例如,面对学生,我的教学语言中存在很多问题,题目设计不但要精,还要具有针对性,让学生不做无用功,而又要把所有的知识点通过题目深刻理解。

  一节课或几节课或许对我的教学没有多大的帮助,但是只要我能够在教学中不断的摸索,不断地寻找不足,改进不足,我相信一切都会不断变好的。感恩!

相关文章

推荐文章