一次函数的图象和性质教案一等奖设计
1、一次函数的图象和性质教案一等奖设计
一、目的要求
1.使学生能画出正比例函数与一次函数的图象,一次函数的图象和性质 —— 初中数学第三册教案。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x y=2x—1 y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
前面我们在画一次函数的`图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。
先看两个正比例项数,
y=0。5x
与 y=—0。5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。
实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0, O)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数 y=0。5x 的图象.
这里,k=0.5>0.
从图象上看, y随x的增大而增大.
再观察正比例函数y=—0.5x 的图象。
这里,k=一0.5<0
从图象上看, y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质。
先看
y=0。5x
任取两对对应值。 (x1,y1)与(x2,y2),
如果x1>x2,由k=0。5>0,得
0。5x1>0。5x2
即yl>y2
这就是说,当x增大时,y也增大。
类似地,可以说明的y=—0.5x 性质。
从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。
一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(O,b)与(— ,0)
两点,
对于例 l中的一次函效
y=2x+1与y=—2x+1
就分别选取
(O,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质,初中数学教案《一次函数的图象和性质 —— 初中数学第三册教案》。
对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。
课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。
课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2。 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点( ,0),过这两点的直线即所求图象。
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5A组第l一3题.
2.选作教科书习题13.5B组第1题.
2、一次函数的图象和性质教案一等奖设计
一、目的要求
1.使学生能画出正比例函数与一次函数的图象。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析
1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程
复习提问:
1.什么是一次函数?什么是正比例函数?
2.在同一直角坐标系中描点画出以下三个函数的图象:
y=2x y=2x—1 y=2x+1
新课讲解:
1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的`坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。
先看两个正比例项数,
y=0。5x
与 y=—0。5x
由这两个正比例函数的解析式不难看出,当x=0时,
y=0
即函数图象经过原点.(让学生想一想,为什么?)
除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。
实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:
(1)先选取两点,通常选点(0,0)与点(1,k);
(2)在坐标平面内描出点(0, O)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
观察正比例函数 y=0。5x 的图象.
这里,k=0.5>0.
从图象上看, y随x的增大而增大.
再观察正比例函数y=—0.5x 的图象。
这里,k=一0.5<0
从图象上看, y随x的增大而减小
实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质。
先看
y=0。5x
任取两对对应值。 (x1,y1)与(x2,y2),
如果x1>x2,由k=0。5>0,得
0。5x1>0。5x2
即yl>y2
这就是说,当x增大时,y也增大。
类似地,可以说明的y=—0.5x 性质。
从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。
一般地,正比例函数y=kx(k≠0)有下列性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数
y=kx+b(k,b是常数,k≠0)
通常选取
(O,b)与(—,0)
两点,
对于例 l中的一次函效
y=2x+1与y=—2x+1
就分别选取
(O,1)与(一0.5,2),
还有
(0,1)—与(0.5.0).
在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b
结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。
对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。
课堂练习:
教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。
课堂小结:
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2。 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点(,0),过这两点的直线即所求图象。
3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).
四、课外作业
1.教科书习题13.5A组第l一3题.
2.选作教科书习题13.5B组第1题.
3、一次函数的图象和性质教案一等奖设计
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点难点:
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。
教学过程:
一、提出问题
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)
4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗?
[因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)]
5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?
二、解决问题
由以上第4个问题的`解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;
x … -2 -1 0 1 2 3 4 …
y … -6 -4 -2 -2 -2 -4 -6 …
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2
三、做一做
1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?
教学要点
(1)在学生画函数图象的同时,教师巡视、指导;
(2)叫一位或两位同学板演,学生自纠,教师点评。
2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
教学要点
(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;
y=ax2+bx+c
=a(x2+x)+c
=a[x2+x+ ()2-()2]+c
=a[x2+x+()2]+c-
=a(x+)2+
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/ 2a ,顶点坐标是(-,)
四、课堂练习
课本练习第1、2、3题。
五、小结
通过本节课的学习,你学到了什么知识?有何体会?
4、一次函数的图象和性质教案一等奖设计
教学目标:
1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.
2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.
3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.
教学重点:
1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质.
2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.
教学难点:
经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程.
教学过程:
一、学前准备
我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.
二、探究活动
(一)、作函数y=x2的图象.
回忆画函数图象的一般步骤吗?(列表,描点,连线.)
下面就请大家按上面的步骤作出y=x2的图象.
(1)列表:
x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9
(2)在直角坐标系中描点.
(3)用光滑的,曲线连接各点,便得到函数y=x2的图象.
(二)、议一议
对于二次函数y=x2的图象, (1)你能描述图象的形状吗?与同伴进行交流.
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
(3)当x0时,随着x值的增大,y的值如何变化?当x0时呢?
(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?
(5)图象是轴对称图形吗?如果是,它的'对称轴是什么?请你找出几对对称点,并交流.
下面我们系统地总结:
(三)y=x2的图象的性质.
二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流.
大家讨论之后系统地总结出y=x2的图象的所有性质.
当堂练习:按照画图象的步骤作出函数y=-x2的图象.
y=-x2的图象如右图,并让学生总结:
形状是___________,只是它的开口方向____________,它
与y=x2的图象形状________,方向________,这两个图形可
以看成是__________对称.
试着让学生讨论y=-x2的图象的性质.
并尝试比较y=x2与y=-x2的图象,比较异同点.
不同点:
相同点:
联系:
(四)课堂练习: 随堂练习(P47)
三.学习体会
1.本节课你有哪些收获?你还有哪些疑问?
2.你认为老师上课过程中还有哪些须改进的地方?
3.预习时的疑问解决了吗?
四.自我测试
1.在同一直角坐标系中画出函数y=x2与y=-x2的图象.
2.下列函数中是二次函数的是 ( )
A. y=2+5x2 B.y= C.y=3x(x+5)2 D. y=
3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标
4、已知函数y=mxm2+m.
(1)m取何值时,它的图象开口向上.
(2)当x取何值时,y随x的增大而增大.
(3)当x取何值时,y随x的增大而减小.
(4)x取何值时,函数有最小值.
5、一次函数的图象和性质教案一等奖设计
●知识梳理
1.三角函数的图象和性质
函 数
性 质=sinx=csx=tanx
定义域
值域
图象
奇偶性
周期性
单调性
对称性
注:读者自己填写.
2.图象与性质是一个密不可分的整体,研究性质要注意联想图象.
●学生练习
1.函数=sin( -2x)+sin2x的最小正周期是
A.2πB.πC. D.4π
解析:= cs2x- sin2x+sin2x= cs2x+ sin2x=sin( +2x),T=π.
答案:B
2.若f(x)sinx是周期为π的奇函数,则f(x)可以是
A.sinxB.csxC.sin2xD.cs2x
解析:检验.
答案:B
3.函数=2sin( -2x)(x∈[0,π])为增函数的区间是
A.[0, ]B.[ , ]
C.[ , ]D.[ ,π]
解析:由=2sin( -2x)=-2sin(2x- )其增区间可由=2sin(2x- )的减区间得到,即2π+ ≤2x- ≤2π+ ,∈Z.
∴π+ ≤x≤π+ ,∈Z.
令=0,故选C.
答案:C
4.把=sinx的图象向左平移 个单位,得到函数____________的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数____________的图象.
解析:向左平移 个单位,即以x+ 代x,得到函数=sin(x+ ),再把所得图象上所有点的横坐标伸长到原来的2倍,即以 x代x,得到函数:=sin( x+ ).
答案:=sin(x+ ) =sin( x+ )
5.函数=lg(csx-sinx)的定义域是_______.
解析:由csx-sinx>0 csx>sinx.由图象观察,知2π- <x<2π+ (∈Z).
答案:2π- <x<2π+ (∈Z)
●典例剖析
【例1】 (1)=csx+cs(x+ )的最大值是_______;
(2)=2sin(3x- )的图象的两条相邻对称轴之间的距离是_______.
剖析:(1)=csx+ csx- sinx
= csx- sinx= ( csx- sinx)
= sin( -x).
所以ax= .
(2)T= ,相邻对称轴间的距离为 .
答案:
【例2】 (1)已知f(x)的定义域为[0,1),求f(csx)的定义域;
(2)求函数=lgsin(csx)的定义域.
剖析:求函数的定义域:(1)要使0≤csx≤1,(2)要使sin(csx)>0,这里的`csx以它的值充当角.
解:(1)0≤csx<1 2π- ≤x≤2π+ ,且x≠2π(∈Z).
∴所求函数的定义域为{x|x∈[2π- ,2π+ ]且x≠2π,∈Z}.
(2)由sin(csx)>0 2π<csx<2π+π(∈Z).又∵-1≤csx≤1,∴0<csx≤1.故所求定义域为{x|x∈(2π- ,2π+ ),∈Z}.
评述:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.
【例3】 求函数=sin6x+cs6x的最小正周期,并求x为何值时,有最大值.
剖析:将原函数化成=Asin(ωx+ )+B的形式,即可求解.
解:=sin6x+cs6x=(sin2x+cs2x)(sin4x-sin2xcs2x+cs4x)=1-3sin2xcs2x=1- sin22x= cs4x+ .
∴T= .
当cs4x=1,即x= (∈Z)时,ax=1.
深化拓展
函数=tan(ax+θ)(a>0)当x从n变化为n+1(n∈Z)时,的值恰好由-∞变为+∞,则a=_______.
分析:你知道函数的周期T吗?
答案:π
●闯关训练
夯实基础
1.若函数f(x)=sin(ωx+ )的图象(部分)如下图所示,则ω和 的取值是
A.ω=1, = B.ω=1, =-
C.ω= , = D.ω= , =-
解析:由图象知,T=4( + )=4π= ,∴ω= .
又当x= 时,=1,∴sin( × + )=1,
+ =2π+ ,∈Z,当=0时, = .
答案:C
2. f(x)=2cs2x+ sin2x+a(a为实常数)在区间[0, ]上的最小值为-4,那么a的值等于
A.4B.-6C.-4D.-3
解析:f(x)=1+cs2x+ sin2x+a
=2sin(2x+ )+a+1.
∵x∈[0, ],∴2x+ ∈[ , ].
∴f(x)的最小值为2×(- )+a+1=-4.
∴a=-4.
答案:C
3.函数= 的定义域是_________.
解析:-sin ≥0 sin ≤0 2π-π≤ ≤2π 6π-3π≤x≤6π(∈Z).
答案:6π-3π≤x≤6π(∈Z)
4.函数=tanx-ctx的最小正周期为____________.
解析:= - =-2ct2x,T= .
答案:
5.求函数f(x)= 的最小正周期、最大值和最小值.
解:f(x)=
= = (1+sinxcsx)
= sin2x+ ,
所以函数f(x)的最小正周期是π,最大值是 ,最小值是 .
6.已知x∈[ , ],函数=cs2x-sinx+b+1的最大值为 ,试求其最小值.
解:∵=-2(sinx+ )2+ +b,
又-1≤sinx≤ ,∴当sinx=- 时,
ax= +b= b=-1;
当sinx= 时,in=- .
培养能力
7.求使 = sin( - )成立的θ的区间.
解: = sin( - )
= ( sin - cs ) |sin -cs |=sin -cs
sin ≥cs 2π+ ≤ ≤2π+ (∈Z).
因此θ∈[4π+ ,4π+ ](∈Z).
8.已知方程sinx+csx=在0≤x≤π上有两解,求的取值范围.
解:原方程sinx+csx= sin(x+ )=,在同一坐标系内作函数1= sin(x+ )与2=的图象.对于= sin(x+ ),令x=0,得=1.
∴当∈[1, )时,观察知两曲线在[0,π]上有两交点,方程有两解.
评述:本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法.
探究创新
9.已知函数f(x)=
(1)画出f(x)的图象,并写出其单调区间、最大值、最小值;
(2)判断f(x)是否为周期函数.如果是,求出最小正周期.
解:(1)实线即为f(x)的图象.
单调增区间为[2π+ ,2π+ ],[2π+ ,2π+2π](∈Z),
单调减区间为[2π,2π+ ],[2π+ ,2π+ ](∈Z),
f(x)ax=1,f(x)in=- .
(2)f(x)为周期函数,T=2π.
●思悟小结
1.三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性.
2.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误.
●教师下载中心
教学点睛
1.知识精讲由学生填写,起到回顾作用.
2.例2、例4作为重点讲解,例1、例3诱导即可.
拓展题例
【例1】 已知sinα>sinβ,那么下列命题成立的是
A.若α、β是第一象限角,则csα>csβ
B.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则csα>csβ
D.若α、β是第四象限角,则tanα>tanβ
解析:借助三角函数线易得结论.
答案:D
【例2】 函数f(x)=-sin2x+sinx+a,若1≤f(x)≤ 对一切x∈R恒成立,求a的取值范围.
解:f(x)=-sin2x+sinx+a
=-(sinx- )2+a+ .
由1≤f(x)≤
1≤-(sinx- )2+a+ ≤
a-4≤(sinx- )2≤a- .①
由-1≤sinx≤1 - ≤sinx- ≤
(sinx- ) = ,(sinx- ) =0.
∴要使①式恒成立,
只需 3≤a≤4.
6、一次函数的图象和性质教学反思
一、结合实际,引入概念
正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。
本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数 叫做正比例函数。在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。这里大部分学生能够从形式上正确判断,即达到了“了解”目的。
二、直观教学,激发主体探索。
(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。
(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。
(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的k值,随着b值的不同,函数图象上移或下移。学生在观看动画的过程中理解函数图象平移的规律。
三、修正教学设计,改善教学。
【改一】环节一、正比例函数、一次函数的概念
教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。
【改二】环节二、一次函数的图象
原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。
原设计中,对于增减性的学习。学生先是通过描点法和两点法画了4个一次函数图象,这里学生用了大量的时间来画图,而对于增减性的归纳是通过观看教师所展示的动画得来的,学生自主探索得出性质的时间太少了。如果再加几个一次函数图象让学生画、让学生先自主想想函数图象的特点,可能对于性质的认识会加深。但这样又不够时间来学习平移的有关知识。建议整合知识的时候,本节课先不学习图象的平移。
【改三】环节四、归纳总结
本环节是对一次函数图象关于k、b的性质进行总结,由于前三个环节已经占用了30多分钟了,所以这个环节以教师点评为主,引导性的提问,学生来回答并对完成上图的填空。速度过快,点评不够深入。没能顾及到中下层次的学生。建议留出让学生自主归纳总结,加深理解,然后再由教师点评。
【改四】环节五、巩固练习
由于本节课整合的'知识点较多,而且是平行班教学,新课的学习已经用了35分钟,仅仅剩下10分钟给学生做巩固练习,显得太仓促。建议减少整合的知识点,留够时间给学生做练习。
【改五】课堂秩序需要加强,促进有效教学
有一些学生自顾自的一直在做学习卷,而不管教师的点评与讲解,需要在平常的课堂教学中强调这个问题,强化学生的听课意识。那些一直做题的学生往往是一知半解,不听教师的讲解与点评有碍对知识的全面掌握。
在影响教学有效性的因素中,良好的师生交往是很重要的。良好的教学效果取决于教师和学生双方。学习被看作是一种主动的、合作的建构过程,师生交往永远是教学的核心。所以在师生交往中,仅仅只有学生的自我先行是不够的。合作的、富有创建性的、既能体现教师权威与纪律,又能体现平等的师生交往形式才是有效的。
7、八年级数学《一次函数y=kx+b(k≠0)的图象与性质》教学反思
函数的学习是初中阶段学习的重要内容之一,而一次函数在教材中的位置又是起着承前启后的重要作用。一次函数y=kx+b(k≠0)的图象与性质这一节课主要是指导学生可以通过画一次函数的大致图象很快分析出一次函数图象的性质。所谓大致图象是指能大致表示函数与两坐标轴交点是在原点、正或负半轴,以及函数的分布和增减性。
画函数图象时,我形象地将它比喻成一个人沿着x轴的正方向行走当k>0时他就是上坡,当k<0时便下坡。课件形象地展示一次函数的图象分布和增减性的分析后,学生基本都能按先确定b的位置,根据上下坡的形象比喻画出函数的大致图象,从而说出图象的分布。
练习:直线y=kx+b不经过第二象限,则k,b。
在这之前我已经用课件展示了b和k是确定图象的不同分布规律。这一题让学生分组讨论,然后上黑板画出所有的`情况。有一组的结果如下图:
前三种是意料之中的,能考虑到第三种的同学已经很不错了,因为题目中并没有说明是一次函数y=kx+b(k≠0),第三种便是k=0时的常值函数的图像,关键是第四种的确也是一条直线没有过第二象限,这一组的结果赢得了全班同学的掌声,我在及时表扬了学生的聪明以后,告诉学生第四种情况不在这一题的考虑范围内。当即台下一片哗然,学生兴趣高涨,质疑声四起,我马上趁热打铁:“在学习常值函数时提到过,第四种是x=a(a>0,a为常数),这种情况中y是自变量,x是变量,所以这道题只有前三种情况。”“老师,那么答案就是k≥0且b≤0。”“对的!”我迫不及待地肯定了这位同学。“可是老师当k=0且b=0时又是什么情况,这里他们只画出了三种k>0且b=0,k>0且b<0,k=0且b<0?”又一位学生提出了质疑!全班同学安静了也不过三秒钟,马上有同学说到“那不就是直线y=0,它是和x轴重合的一条直线,坐标轴不属于任何象限,那么这条直线就没有经过第二象限。”这一题学生通过积极参与数学学习和解决问题的活动,培养了学生积极探究的态度、独立思考的习惯、实事求是的作风,发扬了团结协作的精神、体会到了集体的力量是强大的。
当学生完成讨论后,我悬着的心终于放下了,学生真的很了不起,他们用自己思考问题的方法和角度还能弥补老师在备课时没有想到的第四种图形。每一个学生都有成功的潜能,更何况我有53个学生。老师要想驾驭课堂,一定要充分理解学生、信任学生,要做到对学生“收”“放”自如。教师所想并非学生所想,课堂是属于学生的,教师的舞台是学生给的,要有学生的智慧我们课才能更完善。教学的过程的实质是师生共同的拥有学习过程,我们必须给学生充分的发言权、想像的空间、表达自己观点的机会。正所谓教学相长,通过交流也能让师生共同体会其中的乐趣。这节课也真正地尊重了学生,超出我的想象!
8、二次函数图象和性质的复习课教学反思
元月14日,高港区数学骨干教师培训班成员在我校组织了一次集体备课。其中一组成员讨论了由我主备的二次函数图象和性质的复习课,他们提出了许多宝贵的建议,在经过几天的精心修改后,我于元月21日在我校多功能教室上了这堂公开课。本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。
首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。
接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2009年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题2、问题3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的'面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。
这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。
本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学(此文来自)水平更上一个台阶。
9、《反比例函数的图象和性质》教学反思
《反比例函数的图象和性质》教学反思1
这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。
课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的'直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。
在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。
《反比例函数的图象和性质》教学反思2
利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。
用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。
由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。