教案

五年级数学求两个数的最大公约数教案一等奖

2023-07-16 13:55:08

  五年级数学求两个数的最大公约数教案一等奖

五年级数学求两个数的最大公约数教案一等奖

1、五年级数学求两个数的最大公约数教案一等奖

  教学要求

  ①使学生理解公约数、最大公约数、互质数的概念。

  ②使学生初步掌握求两个数最大公约数的一般方法。

  ③培养学生抽象、概括的能力和动手实际操作的能力。

  教学重点理解公约数、最大公约数、互质数的概念。

  教学难点理解并掌握求两个数的最大公约数的一般方法。

  教学用具投影仪等。

  教学过程

  一、创设情境

  填空:①12÷3=4,所以12能被4()。4能()12,12是3的(),3是12的()。②把18和30分解质因数是,它们公有的质因数是()。③10的约数有()。

  二、揭示课题

  我们已经学会求一个数的约数,现在来看两个数的约数。

  三、探索研究

  1.小组合作学习

  (1)找出8、12的约数来。

  (2)观察并回答。

  ①有无相同的约数?各是几?

  ②1、2、4是8和12的什么?

  ③其中最大的一个是几?知道叫什么吗?

  (3)归纳并板书

  ①8和12公有的约数是:1、2、4,其中最大的一个是4。

  ②还可以用下图来表示。

  813

  24612

  8和12的公约数

  (4)抽象、概括。

  ①你能说说什么是公约数、最大公约数吗?

  ②指导学生看教材第66页里有关公约数、最大公约数的概念。

  (5)尝试练习。

  做教材第67页上面的“做一做”的第1题。

  2.学习互质数的概念

  (1)找出下列各组数的公约数来:5和78和912和251和9

  (2)这几组数的公约数有什么特点?

  (3)这几组数中的两个数叫做什么?(看书67页)

  (4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的`关系)

  3.学习例2

  (1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。

  (2)复习的第2题,我们已将18和30分解质因数(如后)18=2×3×330=2×3×5

  (3)观察、分析。

  ①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?

  ②18和30的公约数就必须包含18和30公有的什么?

  ③18和30公有的质因数有哪些?

  ④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))

  ⑤最大公约数6是怎样得出来的?

  (4)归纳板书。

  18和30的最大公约数6是这两个数全部公有质因数的乘积。

  (5)求最大公约数的一般书写格式。

  为了简便,我们把两个短除式合并成一个如:1830

  让学生分组讨论合并后该怎样做?

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最大公约数?

  ④为什么不把商也连乘进去?

  (6)尝试练习。

  做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。

  (7)抽象概括求最大公约数的方法。

  ①谁能说说求最大公约数的方法。

  ②引导学生看教材第68页求两个数的最大公约数的方法。

  四、课堂实践

  做练习十四的1、2、3题。

  五、课堂小结

  学生总结今天学习的内容。

  六、课堂作业

  1.做练习十四的第4题。

  2.做练习十四的12*题。

2、五年级数学求两个数的最大公约数教案一等奖

  目标

  ①使学生理解公约数、最大公约数、互质数的概念。②使学生初步掌握求两个数最大公约数的一般方法。③培养学生抽象、概括的能力和动手实际操作的能力。

  教学及训练

  重点

  教学重点 理解公约数、最大公约数、互质数的概念。

  教学难点理解并掌握求两个数的最大公约数的一般方法。

  仪 器

  教具

  投影仪等。

  教学内容和过程

  教学札记

  一、创设情境

  填空:①12÷3=4,所以12能被4()。4能()12,12是3的(),3是12的()。②把18和30分解质因数是

  18=

  30=

  它们公有的质因数是()。③10的约数有()。

  二、揭示课题

  我们已经学会求一个数的约数,现在来看两个数的约数。

  三、探索研究

  1.小组合作学习

  (1)找出8、12的约数来。

  (2)观察并回答。

  ①有无相同的约数?各是几?

  ②1、2、4是8和12的什么?

  ③其中最大的一个是几?知道叫什么吗?

  (3)归纳并板书

  ①8和12公有的约数是:1、2、4,其中最大的.一个是4。

  ②还可以用下图来表示。

  813

  24612

  8和12的公约数

  (4)抽象、概括。

  ①你能说说什么是公约数、最大公约数吗?

  ②指导学生看教材第66页里有关公约数、最大公约数的概念。

  (5)尝试练习。

  做教材第67页上面的“做一做”的第1题。

  2.学习互质数的概念

  (1)找出下列各组数的公约数来:5和78和912和251和9

  (2)这几组数的公约数有什么特点?

  (3)这几组数中的两个数叫做什么?(看书67页)

  (4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)

  3.学习例2

  (1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。

  (2)复习的第2题,我们已将18和30分解质因数(如后)18=2×3×330=2×3×5

  (3)观察、分析。

  ①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?

  ②18和30的公约数就必须包含18和30公有的什么?

  ③18和30公有的质因数有哪些?

  ④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))

  ⑤最大公约数6是怎样得出来的?

  (4)归纳板书。

  18和30的最大公约数6是这两个数全部公有质因数的乘积。

  (5)求最大公约数的一般书写格式。

  为了简便,我们把两个短除式合并成一个如:1830

  让学生分组讨论合并后该怎样做?

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最大公约数?

  ④为什么不把商也连乘进去?

  (6)尝试练习。

  做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。

  (7)抽象概括求最大公约数的方法。

  ①谁能说说求最大公约数的方法。

  ②引导学生看教材第68页求两个数的最大公约数的方法。

  四、课堂实践

  做练习十四的1、2、3题。

  五、课堂小结

  学生总结今天学习的内容。

  六、课堂作业

  1.做练习十四的第4题。

  2.做练习十四的12*题。

3、五年级数学求两个数的最大公约数教案一等奖

  教学目标

  (1)掌握两个数的最大公约数的质因数特征,能正确地求两个数的最大公约数。

  (2)能较快地说出倍数关系与互质关系的两个数的最大公约数。

  教学重点、难点

  重点:用短除法求两个数的最大公约数

  难点:判断互质数

  教具、学具准备

  教学过程

  一、复习准备

  1、口答:下列各数中,哪些数是约数2?哪些数是约数3?哪些有约数5?

  10、12、9、20、18457235

  2、下列各数中,哪些是互质数?

  4和67和81和105和119和63和12

  学生回答后提问:谁能说一说什么叫互质数?

  3、提问:什么叫公约数?最大公约数?

  练习:

  36的公约数有:

  60的公约数有:

  36和60的公约数有:

  (1)学生全体笔练

  (2)反馈:师生共同作简要评价。

  4、谈话引入:上节课,我们学会了用找出每个数的约数的方法来求两个数的最大公约数,那么,除此外,还有没有更简洁的方法来求两个数的最大公约数呢?这就是本节课我们要学生的`内容。(揭示课题)

  二、教学新识

  1、教学用短除法求最大公约数

  (1)探求特征:将36、60分解质因数。

  36=2×2×3×3

  60=2×2×3×5

  ↓↓↓

  12=2×2×3

  分解以后观察:

  12的质因数与36、60的质因数有什么联系?说明什么?(学生回答后教师36和60的公有质因数用方框框住,并用↓与12的质因数建立对应关系?如上图)

  谁能把你的发现用自己的话说出来。

  结论:求两个数的最大公约数,可以先把这两个数分解质因数,然后把的它们全部公有质因数乘起来,就是最大公约数。

  (2)用你的发现求54和72的最大公约数。

  (全体笔练、两人板演)

  54=2×3×3×3

  72=2×2×2×3×3

  54和72的最大公约数是:2×3×3=18(学生练习后检查板演、反馈评价)

  (3)巩固练习

  A、口答:

  12=2×2×3

  18=2×3×3

  12和18的最大公约数是2×3×3=18(学生练习后检查板演,反馈评价)

  10=2×514=2×7

  10和14的最大公约数。()

  B、笔练:求44和66,18和24的最大公约数。(两人做在投影片上)

  C、反馈矫正。

  (4)教学用简便方法求最大的公约数

  A、为了方便,通常用P.48的方法求最大公约数:(教师边讲边板书)

  36和60的最大公约数是:2×2×3=12

  ......把所有除数连乘

  或:(36,60)=2×2×3=12

  B、练习:课本P.51试一试。

  提问:这种方法和刚才的方法有什么本质上的关系?

  学生回答后明确:实际上是把两个数同时分解质因数,用两个数公有的质因数去除,所以除数之积就是最大公约数。

  C、巩固练习:求42和54、39和65的最大公约数。

  2、教学求特殊关系的两数的最大公约数。

  (1)求下面各组的最大公约数

  4和209和3628和7

  A、学生练习

  B、反馈讨论(学生汇报结果,教师板书)

  (4,24)=4(9,36)=9(28,7)=7

  C、观察每组数的最大公约数有什么特点?每组中的两个数又有什么关系?

  你发现了什么?(用自己的话说一说)

  D、规律应用:下面每组数的最大公约数各是几?(口答)

  45和1536和1842和18

  (2)求下面各组数的最大公约数

  9和105和2117和8

  A、学生练习并同桌讨论:每组的最大公约数有什么规律?每组中两个数又有什么特点?

  B、反馈讨论,明确规律。

  C、口答下列每组的最大公约数

  3和1124和89和1425和2613和17

  3、综合练习:求下面每组数的最大公约数。

  20和2516和3528和36

  6和1418和5485和115

  (1)学生练习。

  (2)反馈,效果检查。

  三、课堂总结

  提问:

  1、本节课学习可什么内容?

  2、一般情况下怎样求两个数的最大公约数?

  3、倍数关系与互质关系的最大公约数各有什么特点?

  四、作业《作业本》

  从繁琐到简单,从一一列举到短除法,从一般到特殊,逐步引导学生掌握求两个数的最大公约数的方法。

4、五年级数学求两个数的最大公约数教案一等奖

  教学目标

  (1)使学生初步了解公约数、最大公约数和互质数的概念。

  (2)学会求几个数的公约数和最大公约数。

  教学重点、难点

  重点:求几个数的公约数和最大公约数

  难点:判断互质数

  教具、学具准备

  教学过程

  备注

  一、复习准备

  1、指名板演

  18和30的约数各有哪几个?

  18的约数有:

  30的约数有:

  2、口答:

  (1)什么叫做约数?

  (2)下面各数中,哪些数有约数2?哪些数有约数3?哪些数有约数5?

  901117284108115

  (3)说出下面每一个自然数的全部约数。

  17151237

  这几个自然数中哪几个是素数?为什么?(出示素数定义)

  二、教学新知

  1、教学新知。

  出示例1(板演题上补充问题)教学。

  (1)教师指出:1既是18的约数,又是30的约数,我们就说1是18和30的公有的约数。

  (2)18和30公有的约数还有哪几个?(板书:18和30公有的`约数有:1、2、3、6。)

  (3)在这些公有的约数中最大的一个公有的约数是几?(板书:其中最大的一个公有约数是6。)

  (4)出示P47图

  (5)归纳:“公有的约数”简称什么数?“最大的一个公有的约数”又简称为什么数?引导学生阅读书上结语。例如:18和30的公约数有1、2、3、6;18和最大公约书是6。

  2、试一试。

  (1)书P47“试一试”填在书上后讲评。紧接着讨论:约数、公约数、

  教学过程

  备 注

  最大的公约数有什么区别?

  (2)18和42这一组数里有没有公约数?2有没有公约数3?有没有公约数5?你是怎么想的?(根据能被2、3、5、整除的数的特点来判断。)

  (3)口答P49第3题。

  3、出示例2教学。

  (1)指一名学生板演,其它填在书上表格当中。

  (2)这几组数的公约数有什么特点?

  (3)小结:公约数只有1的两个数,叫做互质数。(出示定义)例如,互质的两个数有四种情况。边讲边板书:

  ①两个数都是素数。如5和11;

  ②两个数都是合数。如9和16;

  ③一个合数,一个素数。如30和29;

  ④1和另一个自然数。如1和8。

  4、练习、判断:

  (1)指出下面哪一组中的两个数是互质数。哪一组中的两个数不是互质数。为什么?

  8和927和151和72和1513和54和24

  (2)判断。正确的打√,错误的打X。

  ①所有自然数的公约数是1。()

  ②如果两个数是互质数,那末这两个数必定是互质数。()

  ③如果两个数都是素数,那么这两个数必定是互质数。()

  ④相邻的两个自然数都是互质数。

  ⑤两个自然数中有一个数是1,这两个必然是互质数。()

  以上判断正误,要求说出理由。

  (3)讨论:从以上的练习,可以知道,怎样判断两个数是不是互质数?

  三、巩固练习

  P.48第1题、P49第2、6题。

  四、教学总结

  这节课,我们学习了什么,什么叫做公约数、最大公约数和互质数?

  求两个数或三个数的最大公约数,除刚才学过的方法以外,还有一种简便的方法,下节课再学。

  五、作业《作业本》

  从约数着手,层层深入,得出公约数和最大公约数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合思想。从公约数的个数上,引出互质数概念,并引导学生经过探索,得出互质数的组成方式。

  课后反思:教学“求最大公约数”,课本共安排了三个例题及一个“做一做”,教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:“两个数的最大公约数也就是这两个数的差。”教师问:“有什么根据?”学生回答说:首先肯定了学生善于观察和思考的精神,接着又向学生指出:“是巧合呢,还是真有这样的规律存在呢?”学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

5、五年级数学求两个数的最大公约数教案一等奖

  在平日的学习、工作和生活里,大家都收藏过令自己印象深刻的诗句吧,诗句是高度凝练的语句,集中地反映着社会生活。诗句的类型多样,你所见过的诗句是什么样的呢?以下是小编精心整理的描写和赞美村寨的诗句精选,欢迎阅读与收藏。

  教学目标

  使学生学会求三个数的最大公约数的方法,并能正确地求三个数的最大公约数。

  教学重点、难点

  重点:使学生学会求三个数的'最大公约数的方法,并能正确地求三个数的最大公约数。

  难点:

  教具、学具准备

  教学过程

  一、复习引入。

  求下面各组数的最大公约数。

  18和2418和3624和36

  二、新授。

  1、教学例4。

  例6:求18、24和36的最大公约数。

  (1)教师指出:求三个数的最大公约数和求两个数的最大公约数的方法相同。

  (2)引导学生仿照例3的做法去做。(用短除法)

  (3)归纳出求几个数的最大公约数的方法:求几个数的最大公约数,先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的公约数连乘。

  2、试一试。

  求最大公约数。

  6、12和244、7和9

  (1)学生用短除法计算。

  (2)观察讨论得出:第1题由于其中小数6是另外两个数(12和24)的约数,所以6就是它们的最大公约数;第2题中三个数互质,所以它们的最大公约数是1。

  三、巩固练习。

  P.53练一练。

  四、课堂总结:这节课我们学习了什么?怎么来求几个数的最大公约数?

  五、作业:《作业本》

  求三个数的最大公约数与求两个数的最大公约数方法相同,放手让学生自行练习,最后总结出求几个数的最大公约数的方法。

6、引导学生在做数学中创造数学《最大公约数》教学设计与反思

  一 指导思想

  人教版与苏教版教材中对最大公约数认识的编排顺序是相同的:分别找出两个数的约数→比较,生成公约数、最大公约数的概念→会求两个数的最大公约数→应用(最大)公约数知识解决实际问题。

  沿这种思路设计教学,学生对新知的接受常是被动的,并且也只能达成“知识与技能”单一教学目标。数学课程标准“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步和发展。”在这新的教学理念指导下,怎样结合学生的实际生活,在运用知识解决问题的实践操作中,经历知识产生过程,萌发创造新知需要,并完成对新知的建构呢?

  二 教学设计

  1.观察——感知生活数学

  学习约数与倍数之后,布置学生回家观察客厅或卧室,也可到广场上,看看所贴的地板砖数是否正好为整数块数(没有切割)。如果是,沿着长铺了多少块?沿着宽铺了多少块?测量一方砖的边长和房间的长、宽,方砖的边长与房间的长、宽分别是什么关系?

  2.思考——理解数学问题

  课堂教学伊始,投影出贴了地板砖的长方形广场平面图。学生能够用约数、倍数知识解释课前观察到的数学问题:长方形广场的长是方砖边长的m倍,宽是方砖边长的n倍。也可以说方砖的边长既是长方形长的约数,又是长方形宽的约数。与师生交流之后,再出示一个新的问题:我们学校的画廊高1.2米(12分米),长是3米(30分米),美术组的同学想在上面正好贴满大小相同的正方形装饰画,这种装饰画的边长应为多少分米(取整数)?会有几种不同的正方形?

  3.实验——建构数学模型

  学生在对画廊设计问题处于愤悱状态之时,老师借用长方形纸作示范引导:这是一张长15cm,宽10cm的长方形纸,我们可以把它设想为缩小后的校园画廊,(当然也可以想象为客厅或广场的地面)老师在这张长方形纸上设计了两种不同的小正方形,(实物投影出示另一张画了方格的长方形纸)其中一面的小正方形边长为1cm,另一面的小正方形边长为5cm,它们同样整分了这张长方形纸而无剩余。想一想,小正方形边长除了1cm和5cm以外,还会有其它整厘米数吗?根据刚才自己的理解,请拿出课前准备好的`一张长12cm、宽8cm的长方形纸,仿效老师的做法,设计能正好整分这个长方形纸的小正方形,在纸上画一画,看一看有几种不同的画法设计,再想一想其中有什么规律?

  4.总结——创造数学新知

  学生完成上一步操作以后,投影展示学生设计的作品,(会有三种不同的设计:小正方形的边长分别为1cm、2cm、4cm)引导学生表述自己的想法,交流发现规律:因为小正方形要正好整分大长方形,那么,小正方形的边长既要能整除大长方形的长,也要能整除长方形的宽。也就是说小正方形的边长数1、2、4、既是12的约数,也是8的约数。同理,1和5既是15的约数,也是10的约数。

  至此,通过铺方砖的生活常识及几何中长、正方形关系的设计操作,学生实际上已初步感知和理解了公约数的存在及其在生活中的应用。此时,再引导学生通过命名的形式抽象出新的数学概念—公约数:请你根据1、2、4分别与12和8共有的关系给这几个数取一个新的名称,师板书:1、2、4是12和8的( ),待学生大都满意之后再板书:4是12和8的( )。

  板书设计如下:(单位:厘米)

  1是10的约数,也是15的约数 1是12的约数,也是8的约数

  5是10的约数,也是15的约数 2是12的约数,也是8的约数

  4是12的约数,也是8的约数

  1、5是15和10的( 公约数 ) 1、2、4是12和8的(公约数 )

  5是15和10的( 最大公约数 ) 4是12和8的(最大公约数)

  5.应用——解决实际问题

  先解决画廊的装饰画设计,再解答小明分蛋糕的疑难:小明过生日的时候,妈妈给他订了一个大的长方体蛋糕,长42 cm、宽30 cm、高24 cm,小明想把它均匀地切成大小相同的正方体后,再送给每一位客人,他怎样切才能使蛋糕尽可能大一些?至少可以切成多少块?

  三 教学反思

  1.重视数学思想——使数学学习终身受益

  日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。”从这个教学的设计中我们可以看到,教学中不只是让学生接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让学生在经历“数学家”解决问题的过程中去理解、去感受一种数学的思想和观念──数学化思想。学生先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而思考并尝试解决画廊内装饰画的设计,学生自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导学生自己创造了“公约数”与“最大公约数”的概念。

  数学化思想观念是指用数学眼光去认识和处理周围事物或数学问题,可以培养学生良好的“用数学”意识,使数学关系成为学生的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成学生思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,学生学到的只是知识的堆砌,没有自主的发展和对数学本质的领悟。

  2.注重学习体验——让课堂焕发生命活力

  扑面而来的新基础教育课程改革的浪潮强列地震撼着知识为本的传统课堂教学,关注生活、关爱学生、关照生命等极具时代气息的教学理念呼唤着以人为本的课堂。

  注意学习过程中的感悟、体验是本节课设计的又一重点 。观察、测量中感悟生活中的教学;对长方形纸中小方格设计的探索;总结、反思中感知公约数的存在;解决较复杂的分蛋糕问题时体会公约数的作用。教学中的各个环节,都较好地发挥了学生的主体作用,在动手操作与设计中建构了新旧知识的联系。经历了从现实生活中抽象出(最大)公约数的概念,在做数学的过程中体验了数学的真实意义。

  华师大叶澜教授提出了“教育的生命基础”理论,主张“教育具有提升人的生命价值和创造人的精神生命的意义,对生命潜能的开发和发展需要的满足,教育具有不可替代的重要责任。”以学生的经验与活动为基础,以学生的积极参与、身心投入为前提,以学生的自主体验为核心的注重学生体验的教学活动,能够提升学生的生命质量,促进学生和谐发展。如果教学过程仅是师生间简单的知识“授一受”过程,剥夺学生对知识的主体性体验,必然使他们养成被动而不是主动的,依赖而不是独立的,接受而不是创造的体验。那就会丧失了求知的欲望、体验的冲动和创造的才能,课堂学习中学生的生命意义就无从体现。所以《数学课程标准》中,把目标区分为知识技能目标和过程性目标,而过程性目标中的“经历、体验、探索”也可理解为学生的体验过程。体现了《标准》对学生在数学思考、解决问题、以及情感与态度等方面要求的同时,隐含了对学生生命质量的关注和重视。

  3.开发教学资源——师生同为资源创生的主体

  教材只是供教学使用的一种材料,不是一成不变的经典。面对新课程标准,教师要有强烈的课程资源开发意识,不仅自己能针对学习内容开发出有利学生学习和发展的新材料,而且要善于引导学生去寻找和发现身边的数学学习资源。在本节课的教学中,除了教师提示的卧室(广场)地板砖,画廊设计、分蛋糕之外,学生也列举了许多类似的现象:教室内水磨石地面,银行墙壁上的方形面砖,家中客厅顶部木质方块的装饰……学生在资源的识别与解释中,逐步掌握了(最大)公约数的知识,为今后创造性的运用知识打下了良好的基础。

7、五年级数学《公因数和最大公因数》教学反思

  教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

  反思:突出概念的内涵、外延,让学生准确理解概念。

  我用“既是……又是……”的描述,让学生理解“公有”的.意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。

  由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。

  运用数学概念,让学生探索找两个数的最大公因数的方法。

  例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。

  充分利用教育资源,自制课件,协助教学。

  限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。

  本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。

8、版五年级数学下册《最大公因数》的教学反思

  本课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过找公因数的过程,让学生懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,可以进一步引导学生观察分析、讨论,让学生明确找两个数公因数的方法,并对找有特征的数字的`最大公因数的特殊方法有所体验。在此过程中要注意鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,但不要归纳成固定的模式让学生记忆。对于找公因数有困难的学生,教师要从方法上作进一步指导。《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的教学流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥,课堂成了学习的天地。

9、五年级数学《求商的近似数》教学反思

  本节课的教学目标是:使学生掌握用“四舍五入”求商的近似值的方法,它的知识基础是求一个数的近似值,以及小数除法。在这个基础上,学生只要明确在求商的.近似值时,除到比需要保留的小数位数多一位,再四舍五入即可,因此新授时只要通过例题着重强调这个新点,然后再围绕新点进行练习就能使学生掌握本节课的目标,也就是所说的“以旧带新”。

  我将例题讲练的时间进行了压缩,这样节省了大量的时间进行后面的巩固练习,同时增加了一道利用数量关系解决实际问题的应用题,在学生进行解答时,其实也是在巩固所学知识。

  通过本节课,我发现,要上好一节课并非易事,教师的每一句话,所出示的每一道例题都应该让学生有所体会、有所得,这就需要教师在课前细心的研读书中的每一个例题和练习,保证读懂它们的意图为止。同时,只是读懂还不够,教师还要善于组织课堂的结构,能够使学生按照思维的过程进行学习,而不是“胡子眉毛一把抓”。这些话,说起来容易,但真正要实行起来,还是需要平时的点滴积累,这也正好提示我自己要做一个教学上的“有新人”。

相关文章

推荐文章