教案

初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

2023-09-04 12:33:16

  初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

1、初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的`点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

2、初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  案例背景

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的'图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

  三.拓展练习

  练习:若 ,求 的取值范围.

  四.小结及作业

  案例反思:

  本节的重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

3、初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  教学目标

  ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义.

  ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力.

  ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.

  教学重点与难点

  重点:函数概念的形成过程.

  难点:正确理解函数的概念.

  教学准备

  每个小组一副弹簧秤和挂件,一根绳子.

  教学设计

  提出问题:

  1.汽车以60千米/时的速度匀速行驶.行驶里程为s千米,行驶时间为t小时.先填写下面的表,再试着用含t的式子表示s:

  t(小时) 1 2 3 4 5

  s(千米)

  2.已知每张电影票的售价为10元.如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

  3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

  注:(1)让学生充分发表意见,然后教师进行点评.

  (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.

  动手实验

  1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,

  观察并记录弹簧长度的变化,填入下表:

  悬挂重物的质量m(kg)

  弹簧长度l(cm)

  如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

  2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示).设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

  注:分组进行实验活动,然后各组选派代表汇报.

  通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的.关系,学会了运用表格形式来表示实验信息.

  探究新知

  (一)变量与常量的概念

  1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程.其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称之为变量.也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量.

  2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.

  3.举出一些变化的实例,指出其中的变量和常量.

  注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报.

  培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.

  (二)函数的概念

  1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

  师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值.

  2.分组讨论教科书P.7 “观察”中的两个问题.

  注:使学生加深对各种表示函数关系的表达方式的印象.

  3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.

  同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

  在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52.

  巩固新知

  下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

  1.右图是北京某日温度变化图

  2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

  3.国内平信邮资(外埠,100克内)简表:

  信件质量m/克 O<m≤20 20<m≤40 40<m≤60

  邮资y/元 O.80 1.60 2.40

  注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法.

  总结归纳

  1.常量与变量的概念;

  2.函数的定义;

  3.函数的三种表示方式.

  注:通过总结归纳,完善学生已有的知识结构.

  布置作业

  1.必做题:教科书P.18 习题11.1第1题.

  2.选做题:教科书P.18 习题11.1第2题.

  3.备选题:

  (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

  ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

  ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

  ③14、15、16日的日平均温度有什么关系?

  ④点A表示的是哪天的日平均温度?大约是多少度?

  ⑤说说这一周的日平均温度是怎样变化的.

  (2)如右图所示,梯形上底的长是x,下底的长是15,高是8.

  ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数.

  ②用表格表示当x从10变到20时(每次增加1),y的相应值.

  ③当x每增加1时,y如何变化?说说你的理由.

  ④当x=0时,y等于多少?此时它表示的是什么?

  (3)研究表明,土豆的产量与氮肥的施用量有如下关系:

  施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

  土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75

  ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数.

  ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由.

  ④简单说一说氮肥的施用量对土豆产量的影响.

  设计思想

  变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃.因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.

4、初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  教学目标

  ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义.

  ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力.

  ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.

  教学重点与难点

  重点:函数概念的形成过程.

  难点:正确理解函数的概念.

  教学准备

  每个小组一副弹簧秤和挂件,一根绳子.

  教学设计

  提出问题:

  1.汽车以60千米/时的速度匀速行驶.行驶里程为s千米,行驶时间为t小时.先填写下面的表,再试着用含t的式子表示s:

  t(小时) 1 2 3 4 5

  s(千米)

  2.已知每张电影票的售价为10元.如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

  3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

  注:(1)让学生充分发表意见,然后教师进行点评.

  (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.

  动手实验

  1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,

  观察并记录弹簧长度的变化,填入下表:

  悬挂重物的质量m(kg)

  弹簧长度l(cm)

  如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

  2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示).设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

  注:分组进行实验活动,然后各组选派代表汇报.

  通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的.关系,学会了运用表格形式来表示实验信息.

  探究新知

  (一)变量与常量的概念

  1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程.其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称之为变量.也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量.

  2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.

  3.举出一些变化的实例,指出其中的变量和常量.

  注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报.

  培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.

  (二)函数的概念

  1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

  师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值.

  2.分组讨论教科书P.7 “观察”中的两个问题.

  注:使学生加深对各种表示函数关系的表达方式的印象.

  3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.

  同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

  在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52.

  巩固新知

  下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

  1.右图是北京某日温度变化图

  2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

  3.国内平信邮资(外埠,100克内)简表:

  信件质量m/克 O<m≤20 20<m≤40 40<m≤60

  邮资y/元 O.80 1.60 2.40

  注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法.

  总结归纳

  1.常量与变量的概念;

  2.函数的定义;

  3.函数的三种表示方式.

  注:通过总结归纳,完善学生已有的知识结构.

  布置作业

  1.必做题:教科书P.18 习题11.1第1题.

  2.选做题:教科书P.18 习题11.1第2题.

  3.备选题:

  (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

  ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

  ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

  ③14、15、16日的日平均温度有什么关系?

  ④点A表示的是哪天的日平均温度?大约是多少度?

  ⑤说说这一周的日平均温度是怎样变化的.

  (2)如右图所示,梯形上底的长是x,下底的长是15,高是8.

  ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数.

  ②用表格表示当x从10变到20时(每次增加1),y的相应值.

  ③当x每增加1时,y如何变化?说说你的理由.

  ④当x=0时,y等于多少?此时它表示的是什么?

  (3)研究表明,土豆的产量与氮肥的施用量有如下关系:

  施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

  土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75

  ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数.

  ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由.

  ④简单说一说氮肥的施用量对土豆产量的影响.

  设计思想

  变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃.因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.

5、初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  导语:讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,以下是小编为大家精心整理的人教版高一数学《指数函数》教案,欢迎大家参考!

  教学目标

  1。使学生掌握的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

  2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

  (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

  教学设计示例

  课题

  教学目标

  1。 理解的定义,初步掌握的图象,性质及其简单应用。

  2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

  3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  教学重点和难点

  重点是理解的定义,把握图象和性质。

  难点是认识底数对函数值影响的认识。

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一。 引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

  1。6。(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 。

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

  由学生回答: 。

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

  一。 的概念(板书)

  1。定义:形如 的函数称为。(板书)

  教师在给出定义之后再对定义作几点说明。

  2。几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的'性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

  (1) ,  (2) ,   (3)

  (4) ,   (5) 。

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3。归纳性质

  作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

  函数

  1。定义域 :

  2。值域:

  3。奇偶性 :既不是奇函数也不是偶函数

  4。截距:在 轴上没有,在 轴上为1。

  对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

  在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

  二。图象与性质(板书)

  1。图象的画法:性质指导下的列表描点法。

  2。草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

  最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

  3。性质。

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

  (2) 时, 在定义域内为增函数, 时, 为减函数。

  (3) 时, ,      时, 。

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

  三。简单应用    (板书)

  1。利用单调性比大小。  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

  例1。 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;

  (3) 与1 。(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

  解: 在 上是增函数,且

  < 。(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性。

  (2) 自变量的大小比较。

  (3) 函数值的大小比较。

  后两个题的过程略。要求学生仿照第(1)题叙述过程。

  例2。比较下列各组数的大小

  (1) 与 ;  (2) 与   ;

  (3) 与 。(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1,<1,>。

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0。

  三。巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ;

  (3) 与 ; (4) 与 。解答过程略

  四。小结

  1。的概念

  2。的图象和性质

  3。简单应用

  五 。板书设计

6、《222对数函数及其性质》教学反思

  这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。

  通过这节课的教学,我主要有以下三点收获:

  授课的致用性:

  大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。

  碳14的对数公式

  则是今天导课的重要兴趣吸引点。

  信息技术的应用

  多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。

  作业布置的探索性尝试

  (1)上百度,知乎查阅考古年代的推断方法及碳14的.相关应用.

  (2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。

  当然,本节课还是有很多没有想到。也有三点。

  1、内容的繁多性

  总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。

  2、师生互动的简单重复

  发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。

  3、授课中的德育环节

  其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。

7、《对数函数的性质》教学反思

  “对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的`应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

  在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。作了以上分析之后,再分a>1与0。

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

  然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。

8、《对数函数的性质》教学反思

  对数函数与指数函数互为反函数,它们的定义域、值域、对应法则、图像之间有较为明显的关系。因此在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。可从作业和课堂效果看来。同学们没有对指数函数的性质和图象掌握的好,分析有以下原因。

  1、学生对对数函数概念的理解及对数的运算不过关。导致部分题目出现运算错误或不会。

  2、利用对数函数的单调性比较俩个对数式的大小书写格式不规范。说明同学们用函数的观点解决问题的思想方法还没形成。

  3、同学们对对数与指数的互化不是很熟练。导致有关指对互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题 ,更不会用对数函数的单调性去解决。

  以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲俩节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再利用晚自习系统讲解,直到绝大部分学生理解掌握为止。

9、《对数函数的性质》教学反思

  一、教材分析。

  本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材中起到了承上启下的关键作用。一方面,对数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学习幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。

  二、学生分析。

  从学生的知识上看,学生已经学习了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。

  从学生现有的学习能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。通过教师启发式引导,学生能自主探究完成本节课的学习,会进行多媒体的基本操作。

  三、教学目标。

  1、知识与技能目标:

  ①通过具体实例了解对数函数模型的实际背景。

  ②初步理解对数函数的概念、图像和性质。

  2、过程与方法目标:

  ①借助课件绘制对数函数图像,加深对定义的认识,增强对对数函数图像的直观感知。

  ②学生观察对数函数图像,通过代表发言等活动,探究对数函数性质。

  ③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。

  3、情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。

  四、教学环境与准备。

  多媒体网络教室、课件。

  五、教学过程。

  1、探究新知。

  (1)归纳定义。

  设计意图:通过对函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。

  对数函数的定义:一般地,形如(且)的`函数叫做对数函数,其中是自变量,函数的定义域为 。

  师生共同分析定义要点:

  ①定义域为。

  ②对数函数是形式化的定义。

  ③且。教师引导学生将指数函数定义与对数函数定义作对比。

  (2)作图探究。

  问题2:我们研究函数的一般过程是什么?

  ①教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。

  (设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。)

  ②作图1:画出函数的图像。

  学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一步。

  (设计意图:描点法作图是画函数图像的基本方法,用正投呈现学生作图结果,培养学生画图基本功。)

  ③作图2:自主选择底数绘制对数函数的图像。

  ④设组确定的对数函数图像。

  (设计意图:学生通过在同一坐标系中,绘制多个对数函数图像,在绘制过程中,可以更加直观地感知底数对对数函数图像的影响,能更好地观察图像特征,总结图像性质。)

  ⑤学生自主选择底数,绘制对数函数图像,”,各小组根据所绘制的对数函数图像,观察图像特征,总结性质,每组自荐一名代表发言。教师适时发问、点拨,引导学生总结,师生、生生互动交流。

  观察图像,你认为如何对对数函数进行分类研究?

  各小组学生共提出两类标准:

  a、按图像上升和下降分两类。

  b、按底数分两类。经教师引导,学生发现这两类标准可以统一:与图像上升统一;与图像下降统一。

  ⑥你能结合屏幕上所呈现的对数函数图像,观察它们的图像特征,并总结其性质吗?

  各组学生从图像位置、特殊点、图像变化趋势等方面总结图像特征。(设计意图:学生通过观察具体对数函数图像,应用数形结合思想,归纳概括性质。)

  (设计意图:通过几何画板课件的动态演示,学生更直观地观察到对数函数图像随底数的变化情况,以及为什么要把底数分为和两类,有利于学生由图像归纳性质,从而突破本节课的难点。)

  (3)归纳性质。

  学生观察图像,讨论总结性质。

  (设计意图:学生总结性质,培养学生归纳概括能力。)

  师生共同对学习内容进行总结:

  ①研究函数的一般过程是:定义→图像→性质→应用。

  ②借助图像研究性质,应用了数形结合思想;由具体对数函数入手,到一般对数函数总结性质,应用由特殊到一般思想方法;对数函数对底数分类进行研究性质,应用了分类讨论思想,类比指数函数研究对数函数,应用了类比思想。

  3、例题讲解。

  师:刚才我们共同探究得出性质,下边看性质应用。

  例1:比较下列各组中两个值的大小:① ;② ;③ 。

  (设计意图:通过例题使学生体会对数函数单调性应用,设计三题,使学生体会分类讨论思想。)

  第一题教师引导讲解,示范解答过程,第二题、第三题学生正投讲解。

  设计意图:通过学生正投讲解题目做法,培养学生学习数学的信心和勇气,同时,对于出现的错误及时纠错,起到示范作用。

  4、归纳总结。

  (1)这节课你学到哪些知识?

  (2)这节课你体会到哪些数学思想方法?

  5、分层作业。

  (1)必做题:P73,2、3;

  (2)选作题:函数和的图像间有何关系?

  六、教学反思。

  1、 设计问题系列,驱动教学。

  问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

  2、借助信息技术突出重点、突破难点。

  本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:

  (1)探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

  (2)绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

  (3)探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

  (4)运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。

10、初中数学《一次函数与二元一次方程组》教学反思

  上完课后失败感比较强。

  本节课是人教版八年级上册第十一章第三节第三课时。此前,学生已经探究过一次函数、一元一次方程及一元一次不等式的联系。通过本节课的学习,让学生能从函数的角度动态地分析方程(组)、不等式,提高认识问题的水平。

  本节课的引入我通过一个一次函数形式问题提问,学生看出即使一次函数也是二元一次方程创设情境,引出一次函数与方程有一定的关系,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的进行团结合作教育,把德育教育渗透在我的教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时对学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的探讨与学习中。

  本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标。本节的图象解法依据了这个道理。”因此本节需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。

  为了培养学生的发散思维和规范解题的.习惯,我引导学生将“上网收费”问题延伸为拓展应用题,前后呼应,使学生有效地理解本节课的难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,又由于用多媒体课件展示,点了一下屏幕,结果解题答案出来了,有点操之过急,而且我当时也没有采取扑救措施,这是我的失误,也是这节课的失败之处。

  一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学质量。

11、八年级数学《一次函数y=kx+b(k≠0)的图象与性质》教学反思

  函数的学习是初中阶段学习的重要内容之一,而一次函数在教材中的位置又是起着承前启后的重要作用。一次函数y=kx+b(k≠0)的图象与性质这一节课主要是指导学生可以通过画一次函数的大致图象很快分析出一次函数图象的性质。所谓大致图象是指能大致表示函数与两坐标轴交点是在原点、正或负半轴,以及函数的分布和增减性。

  画函数图象时,我形象地将它比喻成一个人沿着x轴的正方向行走当k>0时他就是上坡,当k<0时便下坡。课件形象地展示一次函数的图象分布和增减性的分析后,学生基本都能按先确定b的位置,根据上下坡的形象比喻画出函数的大致图象,从而说出图象的分布。

  练习:直线y=kx+b不经过第二象限,则k,b。

  在这之前我已经用课件展示了b和k是确定图象的不同分布规律。这一题让学生分组讨论,然后上黑板画出所有的`情况。有一组的结果如下图:

  前三种是意料之中的,能考虑到第三种的同学已经很不错了,因为题目中并没有说明是一次函数y=kx+b(k≠0),第三种便是k=0时的常值函数的图像,关键是第四种的确也是一条直线没有过第二象限,这一组的结果赢得了全班同学的掌声,我在及时表扬了学生的聪明以后,告诉学生第四种情况不在这一题的考虑范围内。当即台下一片哗然,学生兴趣高涨,质疑声四起,我马上趁热打铁:“在学习常值函数时提到过,第四种是x=a(a>0,a为常数),这种情况中y是自变量,x是变量,所以这道题只有前三种情况。”“老师,那么答案就是k≥0且b≤0。”“对的!”我迫不及待地肯定了这位同学。“可是老师当k=0且b=0时又是什么情况,这里他们只画出了三种k>0且b=0,k>0且b<0,k=0且b<0?”又一位学生提出了质疑!全班同学安静了也不过三秒钟,马上有同学说到“那不就是直线y=0,它是和x轴重合的一条直线,坐标轴不属于任何象限,那么这条直线就没有经过第二象限。”这一题学生通过积极参与数学学习和解决问题的活动,培养了学生积极探究的态度、独立思考的习惯、实事求是的作风,发扬了团结协作的精神、体会到了集体的力量是强大的。

  当学生完成讨论后,我悬着的心终于放下了,学生真的很了不起,他们用自己思考问题的方法和角度还能弥补老师在备课时没有想到的第四种图形。每一个学生都有成功的潜能,更何况我有53个学生。老师要想驾驭课堂,一定要充分理解学生、信任学生,要做到对学生“收”“放”自如。教师所想并非学生所想,课堂是属于学生的,教师的舞台是学生给的,要有学生的智慧我们课才能更完善。教学的过程的实质是师生共同的拥有学习过程,我们必须给学生充分的发言权、想像的空间、表达自己观点的机会。正所谓教学相长,通过交流也能让师生共同体会其中的乐趣。这节课也真正地尊重了学生,超出我的想象!

12、八年级数学上册《函数图象性质》教学反思

  “有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的'值。

  研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。

相关文章

推荐文章